×

A two-stage hybrid procedure for estimating an inverse regression function. (English) Zbl 1215.62044

Summary: We consider a two-stage procedure (TSP) for estimating an inverse regression function at a given point, where isotonic regression is used at stage one to obtain an initial estimate and a local linear approximation in the vicinity of this estimate is used at stage two. We establish that the convergence rate of the second-stage estimate can attain the parametric \(n^{1/2}\) rate. Furthermore, a bootstrapped variant of TSP (BTSP) is introduced and its consistency properties studied. This variant manages to overcome the slow speed of the convergence in distribution and the estimation of the derivative of the regression function at the unknown target quantity. Finally, the finite sample performance of BTSP is studied through simulations and the method is illustrated on a data set.

MSC:

62G08 Nonparametric regression and quantile regression
62G09 Nonparametric statistical resampling methods
62G20 Asymptotic properties of nonparametric inference
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Anbar, D. (1977). A modified Robbins-Monro procedure approximating the zero of a regression function from below. Ann. Statist. 5 229-234. · Zbl 0359.62066
[2] Bambos, N. and Michailidis, G. (2004). Queueing and scheduling in random environments. Adv. in Appl. Probab. 36 293-317. · Zbl 1064.60182
[3] Banerjee, M. (2007). Likelihood based inference for monotone response models. Ann. Statist. 35 931-956. · Zbl 1133.62328
[4] Banerjee, M. (2009). Inference in exponential family regression models under certain shape constraints. In Advances in Multivariate Statistical Methods. Statistical Science and Interdisciplinary Research 4 249-271. World Sci. Publ., Hackensack, NJ.
[5] Banerjee, M. and Wellner, J. A. (2005). Confidence intervals for current status data. Scand. J. Statist. 32 405-424. · Zbl 1087.62107
[6] Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D. (1972). Statistical Inference Under Order Restrictions : The Theory and Application of Isotonic Regression . Wiley, London. · Zbl 0246.62038
[7] Billingsley, P. (1995). Probability and Measure , 3rd ed. Wiley, New York. · Zbl 0822.60002
[8] Brunk, H. D. (1970). Estimation of isotonic regression. In Nonparametric Techniques in Statistical Inference (Proc. Sympos., Indiana Univ., Bloomington, Ind., 1969) 177-197. Cambridge Univ. Press, London.
[9] Durot, C. (2002). Sharp asymptotics for isotonic regression. Probab. Theory Related Fields 122 222-240. · Zbl 0992.60028
[10] Durot, C. (2007). On the \(\mathbbL_p\)-error of monotonicity constrained estimators. Ann. Statist. 35 1080-1104. · Zbl 1129.62024
[11] Durot, C. (2008). Monotone nonparametric regression with random design. Math. Methods Statist. 17 327-341. · Zbl 1231.62066
[12] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability 66 . Chapman and Hall, London. · Zbl 0873.62037
[13] Gasser, T., Sroka, L. and Jennen-Steinmetz, C. (1986). Residual variance and residual pattern in nonlinear regression. Biometrika 73 625-633. JSTOR: · Zbl 0649.62035
[14] Gezmu, M. and Flournoy, N. (2006). Group up-and-down designs for dose-finding. J. Statist. Plann. Inference 136 1749-1764. · Zbl 1089.62132
[15] Groeneboom, P., Hooghiemstra, G. and Lopuhaä, H. P. (1999). Asymptotic normality of the L 1 error of the grenander estimator. Ann. Statist. 27 1316-1347. · Zbl 1105.62342
[16] Groeneboom, P. and Wellner, J. A. (2001). Computing Chernoff’s distribution. J. Comput. Graph. Statist. 10 388-400. JSTOR: · Zbl 04567029
[17] Gruet, M.-A. (1996). A nonparametric calibration analysis. Ann. Statist. 24 1474-1492. · Zbl 0867.62028
[18] Hu, T. C., Móricz, F. and Taylor, R. L. (1989). Strong laws of large numbers for arrays of rowwise independent random variables. Acta Math. Hungar. 54 153-162. · Zbl 0685.60032
[19] Ivanova, A., Montazer-Haghighi, A., Mohanty, S. G. and Durham, S. D. (2003). Improved up-and-down designs for phase I trials. Stat. Med. 22 69-82.
[20] Lai, T. L. (2003). Stochastic approximation. Ann. Statist. 31 391-406. · Zbl 1039.62077
[21] Leurgans, S. (1982). Asymptotic distributions of slope-of-greatest-convex-minorant estimators. Ann. Statist. 10 287-296. · Zbl 0484.62033
[22] Makowski, G. (1975). A rate of convergence for a nondecreasing regression estimator. Bull. Inst. Math. Acad. Sinica 3 61-64. · Zbl 0321.62045
[23] Makowski, G. G. (1973). Laws of the iterated logarithm for permuted random variables and regression applications. Ann. Statist. 1 872-887. · Zbl 0272.60028
[24] Morgan, B. J. T. (1985). The cubic logistic model for quantal assay data. Appl. Statist. 34 105-113. · Zbl 0591.62092
[25] Morgan, B. J. T. (1992). Analysis of Quantal Response Data . Chapman and Hall, London.
[26] Müller, H.-G. and Schmitt, T. (1990). Choice of number of doses for maximum likelihood estimation of the ED50 for quantal dose-response data. Biometrics 46 117-129. · Zbl 0715.62255
[27] Müller, H.-G. and Stadtmüller, U. (1987). Estimation of heteroscedasticity in regression analysis. Ann. Statist. 15 610-625. · Zbl 0632.62040
[28] Osborne, C. (1991). Statistical calibration: A review. International Statistical Review 59 309-336. · Zbl 0743.62066
[29] Rai, K. and Ryzin, J. V. (1981). A generalized multihit dose-response model for low-dose extrapolation. Biometrics 37 341-352. · Zbl 0473.62098
[30] Robbins, H. and Monro, S. (1951). A stochastic approximation method. Ann. Math. Statist. 22 400-407. · Zbl 0054.05901
[31] Robertson, T., Wright, F. T. and Dykstra, R. L. (1988). Order Restricted Statistical Inference . Wiley, Chichester. · Zbl 0645.62028
[32] Rosenberger, W. F. (1996). New directions in adaptive designs. Statist. Sci. 11 137-149.
[33] Rosenberger, W. F. and Haines, L. M. (2002). Competing designs for phase i clinical trials: A review. Stat. Med. 21 2757-2770.
[34] Shiryaev, A. N. (1995). Probability , 2nd ed. Springer, New York. · Zbl 0835.60002
[35] Staniswalis, J. G. and Cooper, V. (1988). Kernel estimates of dose response. Biometrics 44 1103-1119. JSTOR: · Zbl 0715.62250
[36] Stylianou, M. and Flournoy, N. (2002). Dose finding using the biased coin up-and-down design and isotonic regression. Biometrics 58 171-177. JSTOR: · Zbl 1209.62334
[37] Wright, F. T. (1981). The asymptotic behavior of monotone regression estimates. Ann. Statist. 9 443-448. · Zbl 0471.62062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.