×

Limit theorems for power variations of pure-jump processes with application to activity estimation. (English) Zbl 1215.62088

Summary: This paper derives the asymptotic behavior of realized power variation of pure-jump Itô semimartingales as the sampling frequency within a fixed interval increases to infinity. We prove convergence in probability and an associated central limit theorem for the realized power variation as a function of its power. We apply the limit theorems to propose an efficient adaptive estimator for the activity of discretely-sampled Itô semimartingale over a fixed interval.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62F12 Asymptotic properties of parametric estimators
60G48 Generalizations of martingales
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60J60 Diffusion processes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aït-Sahalia, Y. and Jacod, J. (2009). Estimating the degree of activity of jumps in high frequency data. Ann. Statist. 37 2202-2244. · Zbl 1173.62060 · doi:10.1214/08-AOS640
[2] Aït-Sahalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Ann. Statist. 37 184-222. · Zbl 1155.62057 · doi:10.1214/07-AOS568
[3] Andrews, B., Calder, M. and Davis, R. A. (2009). Maximum likelihood estimation for \alpha -stable autoregressive processes. Ann. Statist. 37 1946-1982. · Zbl 1168.62077 · doi:10.1214/08-AOS632
[4] Barndorff-Nielsen, O. E., Graversen, S. E., Jacod, J., Podolskij, M. and Shephard, N. (2005). A central limit theorem for realised power and bipower variations of continuous semimartingales. In From Stochastic Calculus to Mathematical Finance (Y. Kabanov and R. Lipster, eds.) 33-68. Springer, Berlin. · Zbl 1106.60037 · doi:10.1007/978-3-540-30788-4_3
[5] Barndorff-Nielsen, O. E. and Shephard, N. (2001). Non-Gaussian Ornstein-Uhlenbeck-based models and some of their uses in financial economics. J. R. Stat. Soc. Ser. B Stat. Methodol. 63 167-241. JSTOR: · Zbl 0983.60028 · doi:10.1111/1467-9868.00282
[6] Barndorff-Nielsen, O. E. and Shephard, N. (2003). Realized power variation and stochastic volatility models. Bernoulli 9 243-265. · Zbl 1026.60054 · doi:10.3150/bj/1068128977
[7] Barndorff-Nielsen, O. E., Shephard, N. and Winkel, M. (2006). Limit theorems for multipower variation in the presence of jumps. Stochastic Process. Appl. 116 796-806. · Zbl 1096.60022 · doi:10.1016/j.spa.2006.01.007
[8] Billingsley, P. (1968). Convergence of Probability Measures . Wiley, New York. · Zbl 0172.21201
[9] Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation. Encyclopedia of Mathematics and Its Applications 27 . Cambridge Univ. Press, Cambridge. · Zbl 0617.26001
[10] Blumenthal, R. M. and Getoor, R. K. (1961). Sample functions of stochastic processes with stationary independent increments. J. Math. Mech. 10 493-516. · Zbl 0097.33703
[11] Carr, P., Geman, H., Madan, D. and Yor, M. (2002). The fine structure of asset returns: An empirical investigation. J. Business 75 305-332.
[12] Carr, P., Geman, H., Madan, D. B. and Yor, M. (2003). Stochastic volatility for Lévy processes. Math. Finance 13 345-382. · Zbl 1092.91022 · doi:10.1111/1467-9965.00020
[13] Feller, W. (1971). An Introduction to Probability Theory and Its Applications. Vol. II , 2nd ed. Wiley, New York. · Zbl 0219.60003
[14] Jacod, J. (2007). Statistics and high-frequency data. In Semstat Course in La Manga , La Manga, Spain. · Zbl 1375.62025
[15] Jacod, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118 517-559. · Zbl 1142.60022 · doi:10.1016/j.spa.2007.05.005
[16] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 288 . Springer, Berlin. · Zbl 1018.60002
[17] Jacod, J. and Todorov, V. (2009). Testing for common arrivals of jumps for discretely observed multidimensional processes. Ann. Statist. 37 1792-1838. · Zbl 1168.62075 · doi:10.1214/08-AOS624
[18] Klüppelberg, C., Lindner, A. and Maller, R. (2004). A continuous-time GARCH process driven by a Lévy process: Stationarity and second-order behaviour. J. Appl. Probab. 41 601-622. · Zbl 1068.62093 · doi:10.1239/jap/1091543413
[19] Lépingle, D. (1976). La variation d’ordre p des semi-martingales. Z. Wahrsch. Verw. Gebiete 36 295-316. · Zbl 0325.60047 · doi:10.1007/BF00532696
[20] Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion , 3rd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0917.60006
[21] Rosiński, J. (2007). Tempering stable processes. Stochastic Process. Appl. 117 677-707. · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[22] Sato, K. (1999). Lévy Processes and Infinitely Divisible Distributions . Cambridge Univ. Press. · Zbl 0973.60001
[23] Todorov, V. and Tauchen, V. (2010). Volatility jumps. J. Bus. Econom. Statist. · Zbl 1219.91156
[24] Todorov, V. and Tauchen, G. (2010). Activity signature functions for high-frequency data analysis. J. Econometrics 154 125-138. · Zbl 1431.62483 · doi:10.1016/j.jeconom.2009.06.009
[25] Woerner, J. (2003). Purely Discontinuous Lévy Processes and power variation: Inference for the integrated volatility and the scale paramter. Working paper, Univ. Oxford.
[26] Woerner, J. H. C. (2003). Variational sums and power variation: A unifying approach to model selection and estimation in semimartingale models. Statist. Decisions 21 47-68. · Zbl 1046.62084 · doi:10.1524/stnd.21.1.47.20316
[27] Woerner, J. H. C. (2007). Inference in Lévy-type stochastic volatility models. Adv. in Appl. Probab. 39 531-549. · Zbl 1127.62104 · doi:10.1239/aap/1183667622
[28] Zhang, L., Mykland, P. A. and Aït-Sahalia, Y. (2005). A tale of two time scales: Determining integrated volatility with noisy high-frequency data. J. Amer. Statist. Assoc. 100 1394-1411. · Zbl 1117.62461 · doi:10.1198/016214505000000169
[29] Zolotarev, V. M. (1986). One-dimensional Stable Distributions. Translations of Mathematical Monographs 65 . Amer. Math. Soc., Providence, RI. · Zbl 0589.60015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.