×

zbMATH — the first resource for mathematics

Noncooperative games with noncompact joint strategies sets: increasing best responses and approximation to equilibrium points. (English) Zbl 1215.91004
Summary: In this paper conditions proposed by R. M. Flores-Hernández and R. Montes-de-Oca [Kybernetika 43, No. 3, 347–368 (2007; Zbl 1170.90513)] which permit to obtain monotone minimizers of unbounded optimization problems on Euclidean spaces are adapted in suitable versions to study noncooperative games on Euclidean spaces with noncompact sets of feasible joint strategies in order to obtain increasing optimal best responses for each player. Moreover, in this noncompact framework an algorithm to approximate the equilibrium points for noncooperative games is supplied.
MSC:
91A10 Noncooperative games
PDF BibTeX XML Cite
Full Text: Link EuDML
References:
[1] Altman, E., Altman, Z.: S-modular games and power control in wireless networks. IEEE Trans. Automat. Control 48 (2003), 839-842. · Zbl 1364.90076 · doi:10.1109/TAC.2003.811264
[2] Burger, E.: Introduction to the Theory of Games. Prentice Hall, Englewood Cliffs, N. J. 1963. · Zbl 0112.12502
[3] Flores-Hernández, R. M., Montes-de-Oca, R.: Monotonicity of minimizers in optimization problems with applications to Markov control processes. Kybernetika 43 (2007), 347-368. · Zbl 1170.90513 · www.kybernetika.cz · eudml:33863
[4] Fudenberg, D., Tirole, J.: Game Theory. The MIT Press, Cambridge 1991. · Zbl 1339.91001
[5] Milgrom, P., Roberts, J.: Rationalizability, learning, and equilibrium in games with strategic complementarities. Econometrica 58 (1990), 1255-1277. · Zbl 0728.90098 · doi:10.2307/2938316
[6] Rieder, U.: Measurable selection theorems for optimization problems. Manuscripta Math. 24 (1978), 115-131. · Zbl 0385.28005 · doi:10.1007/BF01168566 · eudml:154537
[7] Sundaram, R. K.: A First Course in Optimization Theory. Cambridge University Press, Cambridge 1996. · Zbl 0885.90106 · doi:10.1017/CBO9780511804526
[8] Topkis, D. M.: Minimizing a submodular function on a lattice. Oper. Res. 26 (1978), 305-321. · Zbl 0379.90089 · doi:10.1287/opre.26.2.305
[9] Topkis, D. M.: Equilibrium points in nonzero-sum n-person submodular games. SIAM J. Control Optim. 17 (1979), 773-787. · Zbl 0433.90091 · doi:10.1137/0317054
[10] Topkis, D. M.: Supermodularity and Complementarity. Princeton University Press, Princeton, N. J. 1998.
[11] Vives, X.: Nash equilibrium with strategic complementarities. J. Math. Econ. 19 (1990), 305-321. · Zbl 0708.90094 · doi:10.1016/0304-4068(90)90005-T
[12] Yao, D. D.: S-modular games with queueing applications. Queueing Syst. 21 (1995), 449-475. · Zbl 0858.90142 · doi:10.1007/BF01149170
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.