Paladino, Laura Elliptic curves with \(\mathbb Q({\mathcal E}[3])=\mathbb Q(\zeta_3)\) and counterexamples to local-global divisibility by 9. (English) Zbl 1216.11064 J. Théor. Nombres Bordx. 22, No. 1, 139-160 (2010). The authors constructs a family \({\mathcal F}\) of elliptic curves defined over \({\mathbb Q}\), depending of two rational parameters, with the following property: an elliptic curve belongs to \({\mathcal F}\) if and only if the field of definition ot its 3-torsion is exactly \({\mathbb Q}(\zeta_3)\).A subfamily of \({\mathcal F}\), depending on just one rational parameter \(k\), gives counterexamples to the local-global divisibility problem by 9, in analogy with the examples given in [R. Dvornicich and U. Zannier, “An analogue for elliptic curves of the Grunwald–Wang example”, C. R. Math., Acad. Sci. Paris 338, No. 1, 47–50 (2004; Zbl 1035.14007)] for the local-global divisibility by 4. Reviewer: Roberto Dvornicich (Pisa) Cited in 16 Documents MSC: 11G05 Elliptic curves over global fields 14G05 Rational points Keywords:local-global divisibility problem; elliptic curves Citations:Zbl 1035.14007 × Cite Format Result Cite Review PDF Full Text: DOI EuDML Link References: [1] E. Artin, J. Tate, Class field theory. Benjamin, Reading, MA, 1967. · Zbl 0176.33504 [2] R. Dvornicich, U. Zannier, Local-global divisibility of rational points in some commutative algebraic groups. Bull. Soc. Math. France, 129 (2001), 317-338. · Zbl 0987.14016 [3] R. Dvornicich, U. Zannier, An analogue for elliptic curves of the Grunwald-Wang example. C. R. Acad. Sci. Paris, Ser. I 338 (2004), 47-50. · Zbl 1035.14007 [4] R. Dvornicich, U. Zannier, On local-global principle for the divisibility of a rational point by a positive integer. Bull. Lon. Math. Soc., no. 39 (2007), 27-34. · Zbl 1115.14011 [5] S. Lang, J. TatePrincipal homogeneous spaces over abelian varieties. American J. Math., no. 80 (1958), 659-684. · Zbl 0097.36203 [6] W. Grunwald, Ein allgemeines Existenztheorem für algebraische Zahlkörper. Journ. f.d. reine u. angewandte Math., 169 (1933), 103-107. · Zbl 0006.25204 [7] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld. Invent Math., 44 (1978), no. 2, 129-162. · Zbl 0386.14009 [8] L. Merel, W. Stein, The field generated by the points of small prime order on an elliptic curve. Math. Res. Notices, no. 20 (2001), 1075-1082. · Zbl 1027.11041 [9] L. Merel, Sur la nature non-cyclotomique des points d’ordre fini des courbes elliptiques. (French) [On the noncyclotomic nature of finite-order points of elliptic curves] With an appendix by E. Kowalski and P. Michel. Duke Math. J. 110 (2001), no. 1, 81-119. · Zbl 1020.11041 [10] L. Paladino, Local-global divisibility by 4 in elliptic curves defined over \(\mathbb{Q} \). Annali di Matematica Pura e Applicata, DOI 10.1007/s10231-009-0098-5. · Zbl 1208.11074 [11] M. Rebolledo, Corps engendré par les points de 13-torsion des courbes elliptiques. Acta Arith., no. 109 (2003), no. 3, 219-230. · Zbl 1049.11058 [12] J.-P. Serre, Topics in galois Theory. Jones and barlett, Boston, 1992. · Zbl 0746.12001 [13] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, 1994. · Zbl 0872.11023 [14] J. H. Silverman, The arithmatic of elliptic curves. Springer, 1986. · Zbl 0585.14026 [15] J. H. Silverman, J. Tate, Rational points on elliptic curves. Springer, 1992. · Zbl 0752.14034 [16] E. Trost, Zur theorie des Potenzreste. Nieuw Archief voor Wiskunde, no. 18 (2) (1948), 58-61. · Zbl 0009.29801 [17] Sh. Wang, A counter example to Grunwald’s theorem. Annals of Math., no. 49 (1948), 1008-1009. · Zbl 0032.10802 [18] Sh. Wang, On Grunwald’s theorem. Annals of Math., no. 51 (1950), 471-484. · Zbl 0036.15802 [19] G. Whaples, Non-analytic class field theory and Grunwald’s theorem . Duke Math. J., no. 9 (1942), 455-473. · Zbl 0063.08226 [20] S. Wong, Power residues on abelian variety. Manuscripta Math., no. 102 (2000), 129-137. · Zbl 1025.11019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.