Ahmad, Bashir; Ntouyas, Sotiris K. Boundary value problems for \(q\)-difference inclusions. (English) Zbl 1216.39012 Abstr. Appl. Anal. 2011, Article ID 292860, 15 p. (2011). Summary: We investigate the existence of solutions for a class of second-order \(q\)-difference inclusions with nonseparated boundary conditions. By using suitable fixed-point theorems, we study the cases when the right-hand side of the inclusions has convex as well as nonconvex values. Cited in 51 Documents MSC: 39A13 Difference equations, scaling (\(q\)-differences) 39A12 Discrete version of topics in analysis 34A60 Ordinary differential inclusions Keywords:boundary value problems; second-order \(q\)-difference inclusions; fixed-point theorems PDFBibTeX XMLCite \textit{B. Ahmad} and \textit{S. K. Ntouyas}, Abstr. Appl. Anal. 2011, Article ID 292860, 15 p. (2011; Zbl 1216.39012) Full Text: DOI EuDML OA License References: [1] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, NY, USA, 2002. · Zbl 0986.05001 [2] F. H. Jackson, “On q-definite integrals,” Quarterly Journal, vol. 41, pp. 193-203, 1910. · JFM 41.0317.04 [3] G. Gasper and M. Rahman, Basic Hypergeometric Series, Cambridge University Press, Cambridge, UK, 1990. · Zbl 0695.33001 [4] M. H. Annaby and Z. S. Mansour, “q-Taylor and interpolation series for Jackson q-difference operators,” Journal of Mathematical Analysis and Applications, vol. 344, no. 1, pp. 472-483, 2008. · Zbl 1149.40001 · doi:10.1016/j.jmaa.2008.02.033 [5] A. Dobrogowska and A. Odzijewicz, “Second order q-difference equations solvable by factorization method,” Journal of Computational and Applied Mathematics, vol. 193, no. 1, pp. 319-346, 2006. · Zbl 1119.39017 · doi:10.1016/j.cam.2005.06.009 [6] M. El-Shahed and H. A. Hassan, “Positive solutions of q-Difference equation,” Proceedings of the American Mathematical Society, vol. 138, no. 5, pp. 1733-1738, 2010. · Zbl 1201.39003 · doi:10.1090/S0002-9939-09-10185-5 [7] E. O. Ayoola, “Quantum stochastic differential inclusions satisfying a general lipschitz condition,” Dynamic Systems and Applications, vol. 17, no. 3-4, pp. 487-502, 2008. · Zbl 1202.81130 [8] A. Belarbi and M. Benchohra, “Existence results for nonlinear boundary-value problems with integral boundary conditions,” Electronic Journal of Differential Equations, vol. 2005, no. 06, pp. 1-10, 2005. · Zbl 1075.34015 [9] M. Benaïm, J. Hofbauer, and S. Sorin, “Stochastic approximations and differential inclusions, Part II: applications,” Mathematics of Operations Research, vol. 31, no. 4, pp. 673-695, 2006. · Zbl 1284.62511 · doi:10.1287/moor.1060.0213 [10] Y. K. Chang, W. T. Li, and J. J. Nieto, “Controllability of evolution differential inclusions in Banach spaces,” Nonlinear Analysis, Theory, Methods and Applications, vol. 67, no. 2, pp. 623-632, 2007. · Zbl 1128.93005 · doi:10.1016/j.na.2006.06.018 [11] S. K. Ntouyas, “Neumann boundary value problems for impulsive differential inclusions,” Electronic Journal of Qualitative Theory of Differential Equations, no. 22, pp. 1-13, 2009. · Zbl 1195.34041 [12] J. Simsen and C. B. Gentile, “Systems of p-Laplacian differential inclusions with large diffusion,” Journal of Mathematical Analysis and Applications, vol. 368, no. 2, pp. 525-537, 2010. · Zbl 1191.35163 · doi:10.1016/j.jmaa.2010.02.006 [13] G. V. Smirnov, Introduction to the Theory of Differential Inclusions, American Mathematical Society, Providence, RI, USA, 2002. · Zbl 0992.34001 [14] N. Apreutesei and G. Apreutesei, “A Trotter-Kato type result for a second order difference inclusion in a Hilbert space,” Journal of Mathematical Analysis and Applications, vol. 361, no. 1, pp. 195-204, 2010. · Zbl 1181.47066 · doi:10.1016/j.jmaa.2009.08.065 [15] F. M. Atici and D. C. Biles, “First order dynamic inclusions on time scales,” Journal of Mathematical Analysis and Applications, vol. 292, no. 1, pp. 222-237, 2004. · Zbl 1064.34009 · doi:10.1016/j.jmaa.2003.11.053 [16] A. Cernea and C. Georgescu, “Necessary optimality conditions for differential-difference inclusions with state constraints,” Journal of Mathematical Analysis and Applications, vol. 334, no. 1, pp. 43-53, 2007. · Zbl 1124.49018 · doi:10.1016/j.jmaa.2006.12.020 [17] Y. K. Chang and W. T. Li, “Existence results for second-order dynamic inclusion with m-point boundary value conditions on time scales,” Applied Mathematics Letters, vol. 20, no. 8, pp. 885-891, 2007. · Zbl 1154.34310 · doi:10.1016/j.aml.2006.09.004 [18] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin, Germany, 1992. · Zbl 0760.34002 [19] S. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Theory I, Kluwer Academic, Dodrecht, The Netherlands, 1997. · Zbl 0887.47001 [20] J. P. Aubin and A. Cellina, Differential Inclusions, Springer, Heidelberg, Germany, 1984. · Zbl 0538.34007 [21] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäauser, Boston, Mass, USA, 1990. · Zbl 0713.49021 [22] A. Lasota and Z. Opial, “An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations,” Bulletin de l’Académie Polonaise des Sciences. Série des Sciences Mathématiques, Astronomiques et Physiques, vol. 13, pp. 781-786, 1965. · Zbl 0151.10703 [23] A. Granas and J. Dugundji, Fixed Point Theory, Springer, New York, NY, USA, 2003. · Zbl 1025.47002 [24] A. Bressan and G. Colombo, “Extensions and selections of maps with decomposable values,” Studia Mathematica, vol. 90, pp. 69-86, 1988. · Zbl 0677.54013 [25] T. A. Laz\var, A. Petru\csel, and N. Shahzad, “Fixed points for non-self operators and domain invariance theorems,” Nonlinear Analysis, Theory, Methods and Applications, vol. 70, no. 1, pp. 117-125, 2009. · Zbl 1183.47052 · doi:10.1016/j.na.2007.11.037 [26] R. Wegrzyk, “Fixed point theorems for multifunctions and their applications to functional equations,” Dissertationes Mathematicae, vol. 201, pp. 1-28, 1982. · Zbl 0521.54034 [27] H. Covitz and S. B. Nadler Jr., “Multi-valued contraction mappings in generalized metric spaces,” Israel Journal of Mathematics, vol. 8, no. 1, pp. 5-11, 1970. · Zbl 0192.59802 · doi:10.1007/BF02771543 [28] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer, Heidelberg, Germany, 1977. · Zbl 0346.46038 [29] B. Ahmad and S. K. Ntouyas, “Some existence results for boundary value problems of fractional differential inclusions with non-separated boundary conditions,” Electronic Journal of Qualitative Theory of Differential Equations, vol. 71, pp. 1-17, 2010. · Zbl 1206.26005 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.