Baier, Robert; Farkhi, Elza; Roshchina, Vera On computing the Mordukhovich subdifferential using directed sets in two dimensions. (English) Zbl 1216.49014 Burachik, Regina S. (ed.) et al., Variational analysis and generalized differentiation in optimization and control. In honor of Boris S. Mordukhovich. Berlin: Springer (ISBN 978-1-4419-0436-2/hbk; 978-1-4419-0437-9/ebook). Springer Optimization and Its Applications 47, 59-93 (2010). Summary: The Mordukhovich subdifferential, being highly important in variational and nonsmooth analysis and optimization, often happens to be hard to calculate. We propose a method for computing the Mordukhovich subdifferential of Differences of Sublinear (DS) functions applying the directed subdifferential of differences of convex DC functions. We restrict ourselves to the two-dimensional case mainly for simplicity of the proofs and for the visualizations. The equivalence of the Mordukhovich symmetric subdifferential (the union of the corresponding subdifferential and superdifferential) to the Rubinov subdifferential (the visualization of the directed subdifferential) is established for DS functions in two dimensions. The Mordukhovich subdifferential and superdifferential are identified as parts of the Rubinov subdifferential. In addition, the Rubinov subdifferential may be constructed as the Mordukhovich one by Painleé-Kuratowski outer limits of Fréchet subdifferentials. The results are applied to the case of DC functions. Examples illustrating the obtained results are presented.For the entire collection see [Zbl 1203.49002]. Cited in 6 Documents MSC: 49J52 Nonsmooth analysis 26B25 Convexity of real functions of several variables, generalizations 49J50 Fréchet and Gateaux differentiability in optimization 90C26 Nonconvex programming, global optimization Keywords:Mordukhovich subdifferential; variational analysis; nonsmooth analysis; differences of sublinear (DS) functions; Rubinov subdifferential; outer limits of Fréchet subdifferentials × Cite Format Result Cite Review PDF Full Text: DOI Link References: [1] Amahroq, T.; Penot, JP; Syam, A., On the subdifferentiability of the difference of two functions and local minimization, Set-Valued Anal., 16, 4, 413-427 (2008) · Zbl 1165.26307 · doi:10.1007/s11228-008-0085-9 [2] Baier, R.; Farkhi, E., Differences of convex compact sets in the space of directed sets, Part I: The space of directed sets. Set-Valued Anal., 9, 3, 217-245 (2001) · Zbl 1097.49507 [3] Baier, R.; Farkhi, E., Differences of convex compact sets in the space of directed sets, Part II: Visualization of directed sets. Set-Valued Anal., 9, 3, 247-272 (2001) · Zbl 1097.49508 [4] Baier, R., Farkhi, E.: The directed subdifferential of DC functions. In: A. Leizarowitz, B.S. Mordukhovich, I. Shafrir, A.J. Zaslavski (eds.) Nonlinear Analysis and Optimization II: Optimization. A Conference in Celebration of Alex Ioffe’s 70th and Simeon Reich’s 60th Birthdays, June 18-24, 2008, Haifa, Israel, AMS Contemporary Mathematics, vol.513, pp.27-43. AMS and Bar-Ilan University (2010) · Zbl 1222.49020 [5] Bazaraa, MS; Goode, JJ; Nashed, MZ, On the cones of tangents with applications to mathematical programming, J. Optim. Theory Appl., 13, 389-426 (1974) · Zbl 0259.90037 · doi:10.1007/BF00934938 [6] Borwein, JM; Strójwas, HM, Proximal analysis and boundaries of closed sets in Banach space, I. Theory. Canad. J. Math., 38, 2, 431-452 (1986) · Zbl 0577.46011 [7] Clarke, F.H.: Optimization and nonsmooth analysis, Classics in Applied Mathematics, vol.5. SIAM, Philadelphia, PA (1990). First edition published in Wiley, New York, 1983 · Zbl 0582.49001 [8] Demyanov, VF; Jeyakumar, V., Hunting for a smaller convex subdifferential, J. Global Optim., 10, 3, 305-326 (1997) · Zbl 0872.90083 · doi:10.1023/A:1008246130864 [9] Demyanov, VF; Roshchina, VA, Exhausters, optimality conditions and related problems, J. Global Optim., 40, 1-3, 71-85 (2008) · Zbl 1149.90141 · doi:10.1007/s10898-007-9179-4 [10] Demyanov, V.F., Rubinov, A.M.: Constructive nonsmooth analysis, Approximation and Optimization, vol.7. Peter Lang, Frankfurt/Main (1995). Russian original “Foundations of nonsmooth analysis, and quasidifferential calculus” published in Nauka, Moscow, 1990 · Zbl 0728.49001 [11] Dinh, N.; Mordukhovich, BS; Nghia, TTA, Qualification and optimality conditions for DC programs with infinite constraints, Acta Math. Vietnam., 34, 1, 125-155 (2009) · Zbl 1190.90264 [12] Eberhard, A.; Nyblom, M., Jets, generalised convexity, proximal normality and differences of functions, Nonlinear Anal., 34, 3, 319-360 (1998) · Zbl 0938.49014 · doi:10.1016/S0362-546X(97)00690-1 [13] Hadwiger, H., Minkowskische Addition und Subtraktion beliebiger Punktmengen und die Theoreme von Erhard Schmidt, Mathematische Zeitschrift, 53, 3, 210-218 (1950) · Zbl 0040.38301 · doi:10.1007/BF01175656 [14] Hiriart-Urruty, JB; Ponstein, J., Generalized differentiability, duality and optimization for problems dealing with differences of convex functions, Convexity and Duality in Optimization. Proceedings of the Symposium on Convexity and Duality in Optimization Held at the University of Groningen, The Netherlands June 22, 1984, Lecture Notes in Econom. and Math. Systems, 37-70 (1985), Berlin: Springer, Berlin · Zbl 0591.90073 [15] Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms I. Fundamentals, Grundlehren der mathematischen Wissenschaften, vol.305. Springer, Berlin (1993) · Zbl 0795.49001 [16] Hörmander, PL, Sur la fonction d’appui des ensembles convexes dans un espace localement convexe, Ark. Mat., 3, 12, 181-186 (1954) · Zbl 0064.10504 [17] Ioffe, AD, Sous-différentielles approchées de fonctions numériques, C. R. Acad. Sci. Paris Sér. I Math., 292, 14, 675-678 (1981) · Zbl 0482.46029 [18] Kruger, A. Y., On Fréchet subdifferentials, J. Math. Sci. (N.Y.), 116, 3, 3325-3358 (2003) · Zbl 1039.49021 [19] Kuntz, L.; Scholtes, S., Constraint qualifications in quasidifferentiable optimization, Math. Program. Ser. A, 60, 3, 339-347 (1993) · Zbl 0784.90080 · doi:10.1007/BF01580618 [20] Martínez-Legaz, JE; Seeger, A., A formula on the approximate subdifferential of the difference of convex functions, Bull. Austral. Math. Soc., 45, 1, 37-41 (1992) · Zbl 0742.90071 · doi:10.1017/S0004972700036984 [21] Michel, P.; Penot, JP, Calcul sous-différentiel pour des fonctions lipschitziennes et non lipschitziennes, C. R. Acad. Sci. Paris Sér. I Math., 298, 12, 269-272 (1984) · Zbl 0567.49008 [22] Mordukhovich, BS, Generalized differential calculus for nonsmooth and set-valued mappings, J. Math. Anal. Appl., 183, 1, 250-288 (1994) · Zbl 0807.49016 · doi:10.1006/jmaa.1994.1144 [23] Mordukhovich, B.S.: Variational analysis and generalized differentiation. I Basic theory, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.330. Springer, Berlin (2006) [24] Mordukhovich, B.S.: Variational analysis and generalized differentiation. II Applications, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.331. Springer, Berlin (2006) [25] Mordukhovich, BS; Shao, YH, Nonsmooth sequential analysis in Asplund spaces, Trans. Amer. Math. Soc., 348, 4, 1235-1280 (1996) · Zbl 0881.49009 · doi:10.1090/S0002-9947-96-01543-7 [26] Penot, JP, Sous-différentiels de fonctions numériques non convexes, C. R. Acad. Sci. Paris Sér. I Math., 278, 1553-1555 (1974) · Zbl 0318.46055 [27] Penot, JP, Calcul sous-différentiel et optimisation, J. Funct. Anal., 27, 2, 248-276 (1978) · Zbl 0404.90078 · doi:10.1016/0022-1236(78)90030-7 [28] Pontryagin, L. S., Linear differential games. II, Sov. Math., Dokl., 8, 4, 910-912 (1967) · Zbl 0157.16401 [29] Rockafellar, R.T.: Convex Analysis, Princeton Mathematical Series, vol.28, 2nd edn. Princeton University Press, Princeton, NJ (1972). First published in 1970 [30] Rockafellar, RT; Wets, RJB, Variational analysis, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (1998), Berlin: Springer, Berlin · Zbl 0888.49001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.