×

zbMATH — the first resource for mathematics

Delta method in large deviations and moderate deviations for estimators. (English) Zbl 1216.62027
Summary: The delta method is a popular and elementary tool for deriving limiting distributions of transformed statistics, while applications of asymptotic distributions do not allow one to obtain desirable accuracy of the approximation for tail probabilities. The large and moderate deviation theory can achieve this goal. Motivated by the delta method in weak convergence, a general delta method in large deviations is proposed. The new method can be widely applied to driving the moderate deviations of estimators and is illustrated by examples including the Wilcoxon statistic, the Kaplan-Meier estimator, the empirical quantile processes and the empirical copula function. We also improve the existing moderate deviations results for \(M\)-estimators and \(L\)-statistics by the new method. Some applications of moderate deviations to statistical hypothesis testing are provided.

MSC:
62E20 Asymptotic distribution theory in statistics
60F10 Large deviations
62G05 Nonparametric estimation
62G20 Asymptotic properties of nonparametric inference
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Aleskeviciene, A. K. (1991). Large and moderate deviations for L -statistics. Lithuanian Math. J. 31 145-156. · Zbl 0787.60035
[2] Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993). Statistical Models Based on Counting Processes . Springer, New York. · Zbl 0769.62061
[3] Arcones, M. A. (2002). Moderate deviations for M -estimators. Test 11 465-500. · Zbl 1019.62021
[4] Arcones, M. A. (2003a). Moderate deviations of empirical processes. In Stochastic Inequalities and Applications (E. Giné, C. Houdré and D. Nualart, eds.). Progress in Probability 56 189-212. Birkhäuser, Basel. · Zbl 1061.60022
[5] Arcones, M. A. (2003b). The large deviation principle for stochastic processes. I. Theory Probab. Appl. 47 567-583. · Zbl 1069.60026
[6] Arcones, M. A. (2004). The large deviation principle for stochastic processes. II. Theory Probab. Appl. 48 19-44. · Zbl 1069.60027
[7] Arcones, M. A. (2006). Large deviations for M-estimators. Ann. Inst. Statist. Math. 58 21-52. · Zbl 1097.62013
[8] Bahadur, R. R. (1967). Rates of convergence of estimates and test statistics. Ann. Math. Statist. 38 303-324. · Zbl 0201.52106
[9] Bahadur, R. R. and Zabell, S. L. (1979). Large deviations of the sample mean in general vector spaces. Ann. Probab. 7 587-621. · Zbl 0424.60028
[10] Bentkus, V. and Zitikis, R. (1990). Probabilities of large deviations for L -statistics. Lithuanian Math. J. 30 215-222. · Zbl 0725.62019
[11] Bercu, B. (2001). On large deviations in the Gaussian autoregressive process: Stable, unstable and explosive cases. Bernoulli 7 299-316. · Zbl 0981.62072
[12] Bitouzé, D., Laurent, B. and Massart, P. (1999). A Dvoretzky-Kiefer-Wolfowitz type inequality for the Kaplan-Meier estimator. Ann. Inst. H. Poincaré Probab. Statist. 35 735-763. · Zbl 1054.62589
[13] Boos, D. D. (1979). A differential for L -statistics. Ann. Statist. 7 955-959. · Zbl 0423.62021
[14] Borovkov, A. A. and Mogul ’ skii, A. A. (1992). Large deviations and testing statistical hypotheses. II. Large deviations of maximum points of random fields. Siberian Adv. Math. 2 43-72. · Zbl 0847.62013
[15] Chen, X. (1991). Probabilities of moderate deviations of independent random vectors in a Banach space. Chinese J. Appl. Probab. Statist. 7 24-32. · Zbl 0952.60500
[16] del Barrio, E., Giné, E. and Matrán, C. (1999). Central limit theorems for the Wasserstein distance between the empirical and the true distributions. Ann. Probab. 27 1009-1071. · Zbl 0958.60012
[17] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd ed. Applications of Mathematics (New York) 38 . Springer, New York. · Zbl 0896.60013
[18] Deuschel, J.-D. and Stroock, D. W. (1989). Large Deviations. Pure and Applied Mathematics 137 . Academic Press, Boston, MA. · Zbl 0705.60029
[19] Dinwoodie, I. H. (1993). Large deviations for censored data. Ann. Statist. 21 1608-1620. · Zbl 0925.60020
[20] Djellout, H., Guillin, A. and Wu, L. (2006). Moderate deviations of empirical periodogram and non-linear functionals of moving average processes. Ann. Inst. H. Poincaré Probab. Statist. 42 393-416. · Zbl 1100.60010
[21] Ermakov, M. S. (2008). On semiparametric statistical inferences in the moderate deviation zone. J. Math. Sci. 152 869-874. · Zbl 1288.62023
[22] Fu, J. C. (1982). Large sample point estimation: A large deviation theory approach. Ann. Statist. 10 762-771. · Zbl 0489.62031
[23] Gao, F. (2001). Moderate deviations for the maximum likelihood estimator. Statist. Probab. Lett. 55 345-352. · Zbl 0998.62013
[24] Gao, F. (2003). Moderate deviations and large deviations for kernel density estimators. J. Theoret. Probab. 16 401-418. · Zbl 1041.62025
[25] Gill, R. D. (1989). Non- and semi-parametric maximum likelihood estimators and the von Mises method (Part 1). Scand. J. Statist. 16 97-128. · Zbl 0688.62026
[26] Groeneboom, P., Oosterhoff, J. and Ruymgaart, F. H. (1979). Large deviation theorems for empirical probability measures. Ann. Probab. 7 553-586. · Zbl 0425.60021
[27] He, X. and Shao, Q.-M. (1996). Bahadur efficiency and robustness of Studentized score tests. Ann. Inst. Statist. Math. 48 295-314. · Zbl 0874.62017
[28] Heesterman, C. C. and Gill, R. D. (1992). A central limit theorem for M -estimators by the von Mises method. Statist. Neerlandica 46 165-177. · Zbl 0768.62018
[29] Huber, P. J. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 35 73-101. · Zbl 0136.39805
[30] Inglot, T. and Kallenberg, W. C. M. (2003). Moderate deviations of minimum contrast estimators under contamination. Ann. Statist. 31 852-879. · Zbl 1028.62012
[31] Inglot, T. and Ledwina, T. (1990). On probabilities of excessive deviations for Kolmogorov-Smirnov, Cramér-von Mises and chi-square statistics. Ann. Statist. 18 1491-1495. · Zbl 0705.62025
[32] Joutard, C. (2004). Large deviations for M -estimators. Math. Methods Statist. 13 179-200. · Zbl 1129.62015
[33] Jurečková, J., Kallenberg, W. C. M. and Veraverbeke, N. (1988). Moderate and Cramér-type large deviation theorems for M -estimators. Statist. Probab. Lett. 6 191-199. · Zbl 0638.62032
[34] Kallenberg, W. C. M. (1983). On moderate deviation theory in estimation. Ann. Statist. 11 498-504. · Zbl 0515.62027
[35] Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. J. Amer. Statist. Assoc. 53 457-481. JSTOR: · Zbl 0089.14801
[36] Kester, A. D. M. and Kallenberg, W. C. M. (1986). Large deviations of estimators. Ann. Statist. 14 648-664. · Zbl 0603.62028
[37] Kosorok, M. R. (2008). Introduction to Empirical Processes and Semiparametric Inference . Springer, New York. · Zbl 1180.62137
[38] Ledoux, M. (1992). Sur les déviations modérées des sommes de variables aléatoires vectorielles indépendantes de même loi. Ann. Inst. H. Poincaré Probab. Statist. 28 267-280. · Zbl 0751.60009
[39] Lei, L. and Wu, L. (2005). Large deviations of kernel density estimator in L 1 (\Bbb R d ) for uniformly ergodic Markov processes. Stochastic Process. Appl. 115 275-298. · Zbl 1065.62058
[40] Louani, D. (1998). Large deviations limit theorems for the kernel density estimator. Scand. J. Statist. 25 243-253. · Zbl 0904.62060
[41] Massart, P. (1990). The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Probab. 18 1269-1283. · Zbl 0713.62021
[42] Nikitin, Y. (1995). Asymptotic Efficiency of Nonparametric Tests . Cambridge Univ. Press, Cambridge. · Zbl 0879.62044
[43] Nolan, D. (1992). Asymptotics for multivariate trimming. Stochastic Process. Appl. 42 157-169. · Zbl 0763.62007
[44] Puhalskii, A. and Spokoiny, V. (1998). On large-deviation efficiency in statistical inference. Bernoulli 4 203-272. · Zbl 0954.62006
[45] Reeds, J. A. (1976). On the definition of von Mises functionals. Ph.D. dissertation, Dept. Statistics, Harvard Univ., Cambridge, MA.
[46] Römisch, W. (2005). Delta method, infinite dimensional. In Encyclopedia of Statistical Sciences , 2nd ed. (S. Kotz, C. B. Read, N. Balakrishnan and B. Vidakovic, eds.). Wiley, New York.
[47] Sanov, I. N. (1957). On the probability of large deviations of random magnitudes. Mat. Sb. N. S. 42 (84) 11-44.
[48] Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistics . Wiley, New York. · Zbl 0538.62002
[49] Shao, J. (1989). Functional calculus and asymptotic theory for statistical analysis. Statist. Probab. Lett. 8 397-405. · Zbl 0749.62035
[50] Sieders, A. and Dzhaparidze, K. (1987). A large deviation result for parameter estimators and its application to nonlinear regression analysis. Ann. Statist. 15 1031-1049. · Zbl 0661.62021
[51] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes with Applications to Statistics . Springer, New York. · Zbl 0862.60002
[52] Vandemaele, M. and Veraverbeke, N. (1982). Cramér type large deviations for linear combinations of order statistics. Ann. Probab. 10 423-434. · Zbl 0482.60026
[53] Wellner, J. A. (2007). On an exponential bound for the Kaplan-Meier estimator. Lifetime Data Anal. 13 481-496. · Zbl 1331.62258
[54] Worms, J. (2001). Moderate deviations of some dependent variables. II. Some kernel estimators. Math. Methods Statist. 10 161-193. · Zbl 1007.60011
[55] Wu, L. M. (1994). Large deviations, moderate deviations and LIL for empirical processes. Ann. Probab. 22 17-27. · Zbl 0793.60032
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.