zbMATH — the first resource for mathematics

On a microscopic model of viscous friction. (English) Zbl 1216.70008

70F40 Problems involving a system of particles with friction
34C11 Growth and boundedness of solutions to ordinary differential equations
70K99 Nonlinear dynamics in mechanics
76D99 Incompressible viscous fluids
Full Text: DOI
[1] DOI: 10.1007/BF01611497 · Zbl 1155.81383 · doi:10.1007/BF01611497
[2] DOI: 10.1023/A:1015451905014 · Zbl 1031.82050 · doi:10.1023/A:1015451905014
[3] DOI: 10.1007/s00220-006-1542-7 · Zbl 1113.82059 · doi:10.1007/s00220-006-1542-7
[4] DOI: 10.1007/BF01077243 · Zbl 0422.35068 · doi:10.1007/BF01077243
[5] DOI: 10.1016/S0378-4371(99)00095-3 · doi:10.1016/S0378-4371(99)00095-3
[6] DOI: 10.1007/978-3-662-04062-1_9 · doi:10.1007/978-3-662-04062-1_9
[7] H. Neunzert, Kinetic Theories and the Boltzmann Equation, Lecture Notes in Math. 1048 (Springer, Montecatini, 1981) pp. 60–110.
[8] DOI: 10.1002/mma.1670030131 · Zbl 0492.35067 · doi:10.1002/mma.1670030131
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.