On the rank of elliptic curves over \(\mathbb Q(i)\) with torsion group \(\mathbb Z/4\mathbb Z\times \mathbb Z/4\mathbb Z\). (English) Zbl 1217.11058

Summary: We construct an elliptic curve over \(\mathbb Q(i)\) with torsion group \(\mathbb Z/4\mathbb Z \times\mathbb Z/4\mathbb Z\) and rank equal to 7 and a family of elliptic curves with the same torsion group and rank \(\geq 2\).


11G05 Elliptic curves over global fields
11Y50 Computer solution of Diophantine equations


PARI/GP; APECS; ecdata
Full Text: DOI


[1] I. Connell, APECS. ftp://ftp.math.mcgill.ca/pub/apecs/
[2] J. E. Cremona, Algorithms for modular elliptic curves , Second edition, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0872.14041
[3] A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42(62) (2007), no. 1, 3-18. · Zbl 1137.11038 · doi:10.3336/gm.42.1.01
[4] S. Kamienny, Torsion points on elliptic curves and \(q\)-coefficients of modular forms, Invent. Math. 109 (1992), no. 2, 221-229. · Zbl 0773.14016 · doi:10.1007/BF01232025
[5] M. A. Kenku and F. Momose, Torsion points on elliptic curves defined over quadratic fields, Nagoya Math. J. 109 (1988), 125-149. · Zbl 0647.14020
[6] J.-F. Mestre, Construction de courbes elliptiques sur \(\mathbf{Q}\) de rang \(\geq 12\), C. R. Acad. Sci. Paris Ser. I 295 (1982), 643-644. · Zbl 0541.14027
[7] J.-F. Mestre, Formules explicites et minorations de conducteurs de variétés algébriques, Compositio Math. 58 (1986), no. 2, 209-232. · Zbl 0607.14012
[8] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129-162. · Zbl 0386.14009 · doi:10.1007/BF01390348
[9] K. Nagao, An example of elliptic curve over \(\mathbf{Q}\) with rank \(\geq 20\), Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), no. 8, 291-293. · Zbl 0794.14014 · doi:10.3792/pjaa.69.291
[10] F. Najman, Torsion of elliptic curves over quadratic cyclotomic fields, Math. J. Okayama Univ. (to appear). · Zbl 1222.11076
[11] F. Najman, Complete classification of torsion of elliptic curves over quadratic cyclotomic fields, J. Number Theory. (to appear). · Zbl 1200.11039 · doi:10.1016/j.jnt.2009.12.008
[12] PARI/GP, version 2.3.3, Bordeaux, 2008. http://pari.math.u-bordeaux.fr/.
[13] F. P. Rabarison, Torsion et rang des courbes elliptiques definies sur les corps de nombres algébriques, Doctorat de Université de Caen, 2008.
[14] U. Schneiders and H. G. Zimmer, The rank of elliptic curves upon quadratic extension, in Computational number theory (Debrecen, 1989) , 239-260, de Gruyter, Berlin. · Zbl 0743.14023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.