Chu, Yu-Ming; Wang, Shan-Shan; Zong, Cheng Optimal lower power mean bound for the convex combination of harmonic and logarithmic means. (English) Zbl 1217.26040 Abstr. Appl. Anal. 2011, Article ID 520648, 9 p. (2011). Summary: We find the least value \(\lambda \in (0, 1)\) and the greatest value \(p = p(\alpha)\) such that \(\alpha H(a, b) + (1 - \alpha)L(a, b) > M_p (a, b)\) for \(\alpha \in [\lambda, 1)\) and all \(a, b > 0\) with \(a \neq b\), where \(H(a, b)\), \(L(a, b)\), and \(M_p(a, b)\) are the harmonic, logarithmic, and \(p\)-th power means of two positive numbers \(a\) and \(b\), respectively. Cited in 7 Documents MSC: 26D15 Inequalities for sums, series and integrals PDF BibTeX XML Cite \textit{Y.-M. Chu} et al., Abstr. Appl. Anal. 2011, Article ID 520648, 9 p. (2011; Zbl 1217.26040) Full Text: DOI OpenURL References: [1] Y.-M. Chu and W.-F. Xia, “Two sharp inequalities for power mean, geometric mean, and harmonic mean,” Journal of Inequalities and Applications, vol. 2009, Article ID 741923, 6 pages, 2009. · Zbl 1187.26013 [2] M.-Y. Shi, Y.-M. Chu, and Y.-P. Jiang, “Optimal inequalities among various means of two arguments,” Abstract and Applied Analysis, vol. 2009, Article ID 694394, 10 pages, 2009. · Zbl 1187.26017 [3] J. E. Pe, “Generalization of the power means and their inequalities,” Journal of Mathematical Analysis and Applications, vol. 161, no. 2, pp. 395-404, 1991. · Zbl 0753.26009 [4] A. O. Pittenger, “Inequalities between arithmetic and logarithmic means,” Univerzitet u Beogradu. Publikacije Elektrotehni\vckog Fakulteta. Serija Matematika i Fizika, no. 678-715, pp. 15-18, 1980. · Zbl 0469.26009 [5] A. O. Pittenger, “The symmetric, logarithmic and power means,” Univerzitet u Beogradu. Publikacije Elektrotehni\vckog Fakulteta. Serija Matematika i Fizika, no. 678-715, pp. 19-23, 1980. · Zbl 0469.26010 [6] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, Means and Their Inequalities, vol. 31 of Mathematics and Its Applications (East European Series), D. Reidel Publishing, Dordrecht, The Netherlands, 1988. · Zbl 0687.26005 [7] F. Burk, “The geometric, logarithmic, and arithmetic mean inequality,” The American Mathematical Monthly, vol. 94, no. 6, pp. 527-528, 1987. · Zbl 0632.26008 [8] B. C. Carlson, “The logarithmic mean,” The American Mathematical Monthly, vol. 79, pp. 615-618, 1972. · Zbl 0241.33001 [9] T. P. Lin, “The power mean and the logarithmic mean,” The American Mathematical Monthly, vol. 81, pp. 879-883, 1974. · Zbl 0292.26015 [10] J. Sándor, “On the identric and logarithmic means,” Aequationes Mathematicae, vol. 40, no. 2-3, pp. 261-270, 1990. · Zbl 0717.26014 [11] J. Sándor, “A note on some inequalities for means,” Archiv der Mathematik, vol. 56, no. 5, pp. 471-473, 1991. · Zbl 0693.26005 [12] J. Sándor, “On certain inequalities for means,” Journal of Mathematical Analysis and Applications, vol. 189, no. 2, pp. 602-606, 1995. · Zbl 0847.26015 [13] J. Sándor, “On certain inequalities for means. II,” Journal of Mathematical Analysis and Applications, vol. 199, no. 2, pp. 629-635, 1996. · Zbl 0854.26013 [14] J. Sándor, “On certain inequalities for means. III,” Archiv der Mathematik, vol. 76, no. 1, pp. 34-40, 2001. · Zbl 0976.26015 [15] K. B. Stolarsky, “Generalizations of the logarithmic mean,” Delta. University of Wisconsin, vol. 48, pp. 87-92, 1975. · Zbl 0302.26003 [16] K. B. Stolarsky, “The power and generalized logarithmic means,” The American Mathematical Monthly, vol. 87, no. 7, pp. 545-548, 1980. · Zbl 0455.26008 [17] M. K. Vamanamurthy and M. Vuorinen, “Inequalities for means,” Journal of Mathematical Analysis and Applications, vol. 183, no. 1, pp. 155-166, 1994. · Zbl 0802.26009 [18] P. Kahlig and J. Matkowski, “Functional equations involving the logarithmic mean,” Zeitschrift für Angewandte Mathematik und Mechanik, vol. 76, no. 7, pp. 385-390, 1996. · Zbl 0885.39008 [19] A. O. Pittenger, “The logarithmic mean in n variables,” The American Mathematical Monthly, vol. 92, no. 2, pp. 99-104, 1985. · Zbl 0597.26027 [20] G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, no. 27, Princeton University Press, Princeton, NJ, USA, 1951. · Zbl 0044.38301 [21] B. C. Carlson, “Algorithms involving arithmetic and geometric means,” The American Mathematical Monthly, vol. 78, pp. 496-505, 1971. · Zbl 0218.65035 [22] B. C. Carlson and J. L. Gustafson, “Total positivity of mean values and hypergeometric functions,” SIAM Journal on Mathematical Analysis, vol. 14, no. 2, pp. 389-395, 1983. · Zbl 0515.33002 [23] H. Alzer and W. Janous, “Solution of problem 8\ast ,” Crux Mathematicorum, vol. 13, pp. 173-178, 1987. [24] E. B. Leach and M. C. Sholander, “Extended mean values. II,” Journal of Mathematical Analysis and Applications, vol. 92, no. 1, pp. 207-223, 1983. · Zbl 0517.26007 [25] H. Alzer, “Ungleichungen für Mittelwerte,” Archiv der Mathematik, vol. 47, no. 5, pp. 422-426, 1986. · Zbl 0585.26014 [26] H. Alzer, “Ungleichungen für (e/a)a(b/e)b,” Elemente der Mathematik, vol. 40, pp. 120-123, 1985. · Zbl 0596.26014 [27] H. Alzer and S.-L. Qiu, “Inequalities for means in two variables,” Archiv der Mathematik, vol. 80, no. 2, pp. 201-215, 2003. · Zbl 1020.26011 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.