×

Oscillation criteria for certain second-order nonlinear neutral differential equations of mixed type. (English) Zbl 1217.34111

Summary: Some oscillation criteria are established for the second-order nonlinear neutral differential equation of mixed type
\[ [x(t)+p_1x(t-\tau_1)+p_2x(t+\tau_2))^\gamma]''=q_1(t)x^\gamma(t-\sigma_1)+q_2(t)x^\gamma(t+\sigma_2),\quad t\geq t_0, \]
where \(\gamma\geq 1\) is a quotient of odd positive integers.

MSC:

34K11 Oscillation theory of functional-differential equations
34K40 Neutral functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] J. Hale, Theory of Functional Differential Equations, vol. 3 of Applied Mathematical Sciences, Springer, New York, NY, USA, 2nd edition, 1977. · Zbl 0461.05016 · doi:10.1016/0021-8693(77)90310-6
[2] Ch. G. Philos, “Oscillation theorems for linear differential equations of second order,” Archiv der Mathematik, vol. 53, no. 5, pp. 482-492, 1989. · Zbl 0661.34030 · doi:10.1007/BF01324723
[3] R. P. Agarwal, S.-L. Shieh, and C.-C. Yeh, “Oscillation criteria for second-order retarded differential equations,” Mathematical and Computer Modelling, vol. 26, no. 4, pp. 1-11, 1997. · Zbl 0902.34061 · doi:10.1016/S0895-7177(97)00141-6
[4] J. D\vzurina and I. P. Stavroulakis, “Oscillation criteria for second-order delay differential equations,” Applied Mathematics and Computation, vol. 140, no. 2-3, pp. 445-453, 2003. · Zbl 1043.34071 · doi:10.1016/S0096-3003(02)00243-6
[5] J. Ba\vstinec, L. Berezansky, J. Diblík, and Z. \vSmarda, “On the critical case in oscillation for differential equations with a single delay and with several delays,” Abstract and Applied Analysis, vol. 2010, Article ID 417869, 20 pages, 2010. · Zbl 1209.34080 · doi:10.1155/2010/417869
[6] J. Ba\vstinec, J. Diblík, and Z. \vSmarda, “Oscillation of solutions of a linear second-order discrete-delayed equation,” Advances in Difference Equations, vol. 2010, Article ID 693867, 12 pages, 2010. · Zbl 1200.39002 · doi:10.1155/2010/693867
[7] J. Diblík, Z. Svoboda, and Z. \vSmarda, “Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case,” Computers & Mathematics with Applications, vol. 56, no. 2, pp. 556-564, 2008. · Zbl 1155.34337 · doi:10.1016/j.camwa.2008.01.015
[8] L. Berezansky, J. Diblík, and Z. \vSmarda, “Positive solutions of second-order delay differential equations with a damping term,” Computers & Mathematics with Applications, vol. 60, no. 5, pp. 1332-1342, 2010. · Zbl 1201.34095 · doi:10.1016/j.camwa.2010.06.014
[9] Y. G. Sun and F. W. Meng, “Note on the paper of J. D\vzurina and I. P. Stavroulakis,” Applied Mathematics and Computation, vol. 174, no. 2, pp. 1634-1641, 2006. · Zbl 1096.34048 · doi:10.1016/j.amc.2005.07.008
[10] B. Baculíková, “Oscillation criteria for second order nonlinear differential equations,” Archivum Mathematicum, vol. 42, no. 2, pp. 141-149, 2006. · Zbl 1164.34499
[11] R. G. Koplatadze and T. A. Chanturiya, Ob ostsillyatsionnykh svoistvakh differentsialnykh uravnenii s otklonyayushchimsya argumentom (Oscillatory Properties of Differential Equations with Deviating Argument), Izdat. Tbilis. Univ., Tbilisi, Georgia, 1977.
[12] G. S. Ladde, V. Lakshmikantham, and B. G. Zhang, Oscillation Theory of Differential Equations with Deviating Arguments, vol. 110 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, New York, NY, USA, 1987. · Zbl 0622.34071
[13] J. Diblík, Z. Svoboda, and Z. \vSmarda, “Retract principle for neutral functional differential equations,” Nonlinear Analysis: Theory, Methods & Applications, vol. 71, no. 12, pp. e1393-e1400, 2009. · Zbl 1238.34143 · doi:10.1016/j.na.2009.01.164
[14] L. H. Erbe and Q. Kong, “Oscillation results for second order neutral differential equations,” Funkcialaj Ekvacioj, vol. 35, no. 3, pp. 545-555, 1992. · Zbl 0787.34057
[15] Q. Zhang, J. Yan, and L. Gao, “Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients,” Computers & Mathematics with Applications, vol. 59, no. 1, pp. 426-430, 2010. · Zbl 1189.34135 · doi:10.1016/j.camwa.2009.06.027
[16] Q. Wang, “Oscillation theorems for first-order nonlinear neutral functional differential equations,” Computers & Mathematics with Applications, vol. 39, no. 5-6, pp. 19-28, 2000. · Zbl 0954.34058 · doi:10.1016/S0898-1221(00)00042-0
[17] Z. Han, T. Li, S. Sun, and Y. Sun, “Remarks on the paper [Appl. Math. Comput. 207 (2009) 388-396],” Applied Mathematics and Computation, vol. 215, no. 11, pp. 3998-4007, 2010. · Zbl 1188.34086 · doi:10.1016/j.amc.2009.12.006
[18] L. Liu and Y. Bai, “New oscillation criteria for second-order nonlinear neutral delay differential equations,” Journal of Computational and Applied Mathematics, vol. 231, no. 2, pp. 657-663, 2009. · Zbl 1175.34087 · doi:10.1016/j.cam.2009.04.009
[19] R. Xu and F. Meng, “Oscillation criteria for second order quasi-linear neutral delay differential equations,” Applied Mathematics and Computation, vol. 192, no. 1, pp. 216-222, 2007. · Zbl 1193.34137 · doi:10.1016/j.amc.2007.01.108
[20] J.-G. Dong, “Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments,” Computers & Mathematics with Applications, vol. 59, no. 12, pp. 3710-3717, 2010. · Zbl 1198.34132 · doi:10.1016/j.camwa.2010.04.004
[21] J. D\vzurina and D. Hudáková, “Oscillation of second order neutral delay differential equations,” Mathematica Bohemica, vol. 134, no. 1, pp. 31-38, 2009. · Zbl 1212.34190
[22] M. Hasanbulli and Y. V. Rogovchenko, “Oscillation criteria for second order nonlinear neutral differential equations,” Applied Mathematics and Computation, vol. 215, no. 12, pp. 4392-4399, 2010. · Zbl 1195.34098 · doi:10.1016/j.amc.2010.01.001
[23] B. Baculíková and J. D\vzurina, “Oscillation of third-order neutral differential equations,” Mathematical and Computer Modelling, vol. 52, no. 1-2, pp. 215-226, 2010. · Zbl 1201.34097 · doi:10.1016/j.mcm.2010.02.011
[24] S. H. Saker, “Oscillation of second order neutral delay differential equations of Emden-Fowler type,” Acta Mathematica Hungarica, vol. 100, no. 1-2, pp. 37-62, 2003. · Zbl 1051.34052 · doi:10.1023/A:1024699900047
[25] J. Dzurina, J. Busha, and E. A. Airyan, “Oscillation criteria for second-order differential equations of neutral type with mixed arguments,” Differential Equations, vol. 38, no. 1, pp. 137-140, 2002. · Zbl 1033.34071 · doi:10.1023/A:1014872030186
[26] S. R. Grace, “On the oscillations of mixed neutral equations,” Journal of Mathematical Analysis and Applications, vol. 194, no. 2, pp. 377-388, 1995. · Zbl 0845.34074 · doi:10.1006/jmaa.1995.1306
[27] S. R. Grace, “Oscillations of mixed neutral functional-differential equations,” Applied Mathematics and Computation, vol. 68, no. 1, pp. 1-13, 1995. · Zbl 0829.34058 · doi:10.1016/0096-3003(94)00075-F
[28] J. Yan, “Oscillations of higher order neutral differential equations of mixed type,” Israel Journal of Mathematics, vol. 115, pp. 125-136, 2000. · Zbl 0949.34056 · doi:10.1007/BF02810583
[29] Z. Wang, “A necessary and sufficient condition for the oscillation of higher-order neutral equations,” The Tôhoku Mathematical Journal, vol. 41, no. 4, pp. 575-588, 1989. · Zbl 0684.34068 · doi:10.2748/tmj/1178227728
[30] Z. Han, T. Li, S. Sun, and W. Chen, “On the oscillation of second-order neutral delay differential equations,” Advances in Difference Equations, vol. 2010, Article ID 289340, 8 pages, 2010. · Zbl 1192.34074 · doi:10.1155/2010/289340
[31] Z. Han, T. Li, S. Sun, C. Zhang, and B. Han, “Oscillation criteria for a class of second order neutral delay dynamic equations of Emden-Fowler type,” Abstract and Applied Analysis, vol. 2011, Article ID 653689, 26 pages, 2011. · Zbl 1210.34134 · doi:10.1155/2011/653689
[32] T. Li, Z. Han, P. Zhao, and S. Sun, “Oscillation of even-order neutral delay differential equations,” Advances in Difference Equations, vol. 2010, Article ID 184180, 9 pages, 2010. · Zbl 1209.34082 · doi:10.1155/2010/184180
[33] Z. Han, T. Li, S. Sun, and C. Zhang, “An oscillation criteria for third order neutral delay differential equations,” Journal of Applied Analysis, vol. 16, no. 2, pp. 295-303, 2010. · Zbl 1276.34025
[34] Z. Han, T. Li, S. Sun, and W. Chen, “Oscillation criteria for second-order nonlinear neutral delay differential equations,” Advances in Difference Equations, vol. 2010, Article ID 763278, 23 pages, 2010. · Zbl 1203.34104 · doi:10.1155/2010/763278
[35] S. Sun, T. Li, Z. Han, and Y. Sun, “Oscillation of second-order neutral functional differential equations with mixed nonlinearities,” Abstract and Applied Analysis, vol. 2011, Article ID 927690, 15 pages, 2011. · Zbl 1210.34094 · doi:10.1155/2011/927690
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.