zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional Bloch equation with delay. (English) Zbl 1217.34123
Summary: We investigate a fractional generalization of the Bloch equation that includes both fractional derivatives and time delays. The appearance of the fractional derivative on the left side of the Bloch equation encodes a degree of system memory in the dynamic model for magnetization. The introduction of a time delay on the right side of the equation balances the equation by also adding a degree of system memory on the right side of the equation. The analysis of this system shows different stability behavior for the $T_{1}$ and the $T_{2}$ relaxation processes. The $T_{1}$ decay is stable for the range of delays tested ($1-100 \mu s$), while the $T_{2}$ relaxation in this model exhibited a critical delay (typically $6 \mu s$) above which the system was unstable. Delays are expected to appear in NMR systems, in both the system model and in the signal excitation and detection processes. Therefore, by including both the fractional derivative and finite time delays in the Bloch equation, we believe that we have established a more complete and more realistic model for NMR resonance and relaxation.

34K37Functional-differential equations with fractional derivatives
34A08Fractional differential equations
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
Full Text: DOI
[1] Abragam, A.: Principles of nuclear magnetism, (2002)
[2] Haacke, E. M.; Brown, R. W.; Thompson, M. R.; Venkatesan, R.: Magnetic resonance imaging: physical principles and sequence design, (1999)
[3] Liang, Z. P.; Lauterbur, P. C.: Principles of magnetic resonance imaging: A signal processing perspective, (2000)
[4] Bernstein, M. A.; King, K. F.; Zhou, X. J.: Handbook of MRI pulse sequences, (2004)
[5] Vlaardingerbroek, M. T.; Den Boer, J. A.: Magnetic resonance imaging, (1999)
[6] Kärger, J.; Vojta, G.: On the use of NMR pulsed field-gradient spectroscopy for the study of anomalous diffusion in fractal networks, Chem. phys. Lett. 141, 411-413 (1987)
[7] Kärger, J.; Pfeifer, H.; Vojta, G.: Time correlation during anomalous diffusion in fractal systems and signal attenuation in NMR field-gradient spectroscopy, Phys. rev. A 37, 4514-4517 (1988)
[8] Widom, A.; Chen, H. J.: Fractal Brownian motion and nuclear spin echoes, J. phys. A 28, 1243-1247 (1998)
[9] Kimmich, R.: Strange kinetics, porous media, and NMR, Chem. phys. 284, 253-285 (2002)
[10] Sitnitsky, A. E.; Pimenov, G. G.; Anisimov, A. V.: Spin--lattice NMR relaxation by anomalous translational diffusion, J. magn. Reson. 172, No. 1, 48-55 (2005)
[11] Magin, R. L.; Abdullah, O.; Baleanu, D.; Zhou, X. H. J.: Anomalous diffusion expressed through fractional order differential operators in the Bloch--torrey equation, J. magn. Reson. 190, No. 2, 255-270 (2008)
[12] Petras, I.: Modeling and numerical analysis of fractional-order Bloch equations, Comput. math. Appl. 61, No. 2, 341-356 (2010) · Zbl 1211.65096 · doi:10.1016/j.camwa.2010.11.009
[13] Magin, R. L.; Feng, X.; Baleanu, D.: Solving the fractional order Bloch equation, Concept. magn. Reson. part A 34A, No. 1, 16-23 (2009)
[14] Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, North-holland mathematics studies 204 (2006) · Zbl 1092.45003
[15] Podlubny, I.: Fractional differential equations, (1999) · Zbl 0924.34008
[16] Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[17] Deng, W.; Li, C.; Lu, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dynam. 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[18] Diethelm, K.; Ford, N. J.; Freed, A. D.: A predictor--corrector approach for the numerical solution of fractional differential equations, Nonlinear dynam. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[19] Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Elecron. trans. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071 · emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[20] Li, C. P.; Tao, C. X.: On the fractional Adams method, Comput. math. Appl. 58, No. 8, 1573-1588 (2009) · Zbl 1189.65142
[21] S. Bhalekar, V. Daftardar-Gejji, Chaos in nonlinear delay differential equations of fractional order, Comput. Math. Appl. (submitted for publication). · Zbl 1189.34081
[22] Podlubny, I.: Matrix approach to discrete fractional calculus, Fract. calc. Appl. anal. 3, No. 4, 359-386 (2000) · Zbl 1030.26011
[23] Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y. Q.; Jara, B. M. Vinagre: Matrix approach to discrete fractional calculus II: Partial fractional differential equations, J. comput. Physics (2009) · Zbl 1160.65308
[24] Berberan-Santos, M. N.; Valeur, B.: Luminescence decays with underlying distributions: general properties and analysis with mathematical functions, J. lumin. 126, 263-272 (2007)
[25] Lorenzo, C. F.; Hartley, T. T.: Fractional trigonometry and the spiral functions, Nonlinear dynam. 38, No. 1-4, 23-60 (2004) · Zbl 1094.26004 · doi:10.1007/s11071-004-3745-9
[26] C.F. Lorenzo, T.T. Hartley, The fractional hyperbolic functions: with application to fractional differential equations, in: Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, vol. 6, Pts A-C, 2005, pp. 1505--1512.
[27] Gorecki, H.; Fuksa, S.; Gabrowski, P.; Koritowski, A.: Analysis and synthesis of time delay systems, (1989) · Zbl 0695.93002
[28] Hoppensteadt, F. C.; Jackiewicz, Z.: Numerical solution of a problem in the theory of epidemics, Appl. numer. Math. 56, 533-543 (2006) · Zbl 1085.92035 · doi:10.1016/j.apnum.2005.04.019
[29] Martin, A.; Ruan, S.: Predator--prey models with delay and prey harvesting, J. math. Biol. 43, 247-267 (2001) · Zbl 1008.34066 · doi:10.1007/s002850100095
[30] Chen, Y. Q.; Moore, K. L.: Analytical stability bound for a class of delayed fractional-order dynamic systems, Nonlinear dynam. 29, 191-200 (2002) · Zbl 1020.34064 · doi:10.1023/A:1016591006562
[31] Driver, R. D.: Ordinary and delay differential equations, Appl. math. Sci. 20 (1977) · Zbl 0374.34001