×

Weyl-Titchmarsh theory for time scale symplectic systems on half line. (English) Zbl 1217.34144

Summary: We develop the Weyl-Titchmarsh theory for time scale symplectic systems. We introduce the \(M(\lambda)\)-function, study its properties, construct the corresponding Weyl disk and Weyl circle, and establish their geometric structure including the formulas for their center and matrix radii. Similar properties are then derived for the limiting Weyl disk. We discuss the notions of the system being in the limit point or limit circle case and prove several characterizations of the system in the limit point case and one condition for the limit circle case. We also define the Green function for the associated nonhomogeneous system and use its properties for deriving further results for the original system in the limit point or limit circle case. Our work directly generalizes the corresponding discrete time theory obtained recently by S. Clark and P. Zemánek [Appl. Math. Comput. 217, No. 7, 2952–2976 (2010; Zbl 1214.37034)]. It also unifies the results in many other papers on Weyl-Titchmarsh theory for linear Hamiltonian differential, difference, and dynamic systems when the spectral parameter appears in the second equation. Some of our results are new even in the case of second-order Sturm-Liouville equations on time scales.

MSC:

34N05 Dynamic equations on time scales or measure chains
34B20 Weyl theory and its generalizations for ordinary differential equations

Citations:

Zbl 1214.37034
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] M. Bohner and S. Sun, “Weyl-Titchmarsh theory for symplectic difference systems,” Applied Mathematics and Computation, vol. 216, no. 10, pp. 2855-2864, 2010. · Zbl 1197.39001 · doi:10.1016/j.amc.2010.03.136
[2] S. Clark and P. Zemánek, “On a Weyl-Titchmarsh theory for discrete symplectic systems on a half line,” Applied Mathematics and Computation, vol. 217, no. 7, pp. 2952-2976, 2010. · Zbl 1214.37034 · doi:10.1016/j.amc.2010.08.029
[3] S. Sun, M. Bohner, and S. Chen, “Weyl-Titchmarsh theory for Hamiltonian dynamic systems,” Abstract and Applied Analysis, vol. 2010, Article ID 514760, 18 pages, 2010. · Zbl 1187.37090 · doi:10.1155/2010/514760
[4] C. Zhang and L. Zhang, “Classification for a class of second-order singular equations on time scales,” in Proceedings of the 8th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel/Distributed Computing (Qingdao, China, 2007), W. Feng and F. Gao, Eds., vol. 3, pp. 73-76, IEEE, Los Alamitos, Calif, USA, 2007. · Zbl 1141.91571 · doi:10.1109/SNPD.2007.203
[5] D. R. Anderson, “Titchmarsh-Sims-Weyl theory for complex Hamiltonian systems on Sturmian time scales,” Journal of Mathematical Analysis and Applications, vol. 373, no. 2, pp. 709-725, 2011. · Zbl 1205.34125 · doi:10.1016/j.jmaa.2010.08.023
[6] B. M. Brown, W. D. Evans, and M. Plum, “Titchmarsh-Sims-Weyl theory for complex Hamiltonian systems,” Proceedings of the London Mathematical Society, vol. 87, no. 2, pp. 419-450, 2003. · Zbl 1055.34048 · doi:10.1112/S0024611503014096
[7] D. Chelkak and E. Korotyaev, “Weyl-Titchmarsh functions of vector-valued Sturm-Liouville operators on the unit interval,” Journal of Functional Analysis, vol. 257, no. 5, pp. 1546-1588, 2009. · Zbl 1178.34014 · doi:10.1016/j.jfa.2009.05.010
[8] S. Clark and F. Gesztesy, “Weyl-Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators,” Transactions of the American Mathematical Society, vol. 354, no. 9, pp. 3475-3534, 2002. · Zbl 1017.34019 · doi:10.1090/S0002-9947-02-03025-8
[9] S. Clark and F. Gesztesy, “On Weyl-Titchmarsh theory for singular finite difference Hamiltonian systems,” Journal of Computational and Applied Mathematics, vol. 171, no. 1-2, pp. 151-184, 2004. · Zbl 1065.39027 · doi:10.1016/j.cam.2004.01.011
[10] D. B. Hinton and J. K. Shaw, “Hamiltonian systems of limit point or limit circle type with both endpoints singular,” Journal of Differential Equations, vol. 50, no. 3, pp. 444-464, 1983. · Zbl 0476.34027 · doi:10.1016/0022-0396(83)90071-2
[11] A. M. Krall, “M(\lambda ) theory for singular Hamiltonian systems with one singular point,” SIAM Journal on Mathematical Analysis, vol. 20, no. 3, pp. 664-700, 1989. · Zbl 0683.34008 · doi:10.1137/0520047
[12] S. J. Monaquel and K. M. Schmidt, “On M-functions and operator theory for non-self-adjoint discrete Hamiltonian systems,” Journal of Computational and Applied Mathematics, vol. 208, no. 1, pp. 82-101, 2007. · Zbl 1127.39045 · doi:10.1016/j.cam.2006.10.043
[13] G. Ren and Y. Shi, “The defect index of singular symmetric linear difference equations with real coefficients,” Proceedings of the American Mathematical Society, vol. 138, no. 7, pp. 2463-2475, 2010. · Zbl 1196.39003 · doi:10.1090/S0002-9939-10-10253-6
[14] Y. Shi, “Weyl-Titchmarsh theory for a class of discrete linear Hamiltonian systems,” Linear Algebra and Its Applications, vol. 416, no. 2-3, pp. 452-519, 2006. · Zbl 1100.39020 · doi:10.1016/j.laa.2005.11.025
[15] H. Weyl, “Über gewöhnliche Differentialgleichungen mit Singularitäten und die zugehörigen Entwicklungen willkürlicher Funktionen,” Mathematische Annalen, vol. 68, no. 2, pp. 220-269, 1910. · JFM 41.0343.01 · doi:10.1007/BF01474161
[16] E. C. Titchmarsh, “On expansions in eigenfunctions,” Journal of the London Mathematical Society, vol. 14, pp. 274-278, 1939. · Zbl 0026.32202 · doi:10.1112/jlms/s1-14.4.274
[17] E. C. Titchmarsh, Eigenfunction Expansions Associated with Second-Order Differential Equations. Part I, Clarendon Press, Oxford, UK, 2nd edition, 1962. · Zbl 0099.05201
[18] C. Bennewitz and W. N. Everitt, “The Titchmarsh-Weyl eigenfunction expansion theorem for Sturm-Liouville differential equations,” in Sturm-Liouville Theory. Past and Presen, Proceedings of the International Colloquium (Geneva, 2003), W. O. Amrein, A. M. Hinz, and D. B. Pearson, Eds., pp. 137-171, Birkhäuser, Basel, Switzerland, 2005. · Zbl 1168.34319 · doi:10.1007/3-7643-7359-8_7
[19] W. N. Everitt, “A personal history of the m-coefficient,” Journal of Computational and Applied Mathematics, vol. 171, no. 1-2, pp. 185-197, 2004. · Zbl 1061.34015 · doi:10.1016/j.cam.2004.01.010
[20] J. Weidmann, “Spectral theory of Sturm-Liouville operators approximation by regular problems,” in Sturm-Liouville Theory. Past and Present, , Proceedings of the International Colloquium (Geneva, 2003), W. O. Amrein, A. M. Hinz, and D. B. Pearson, Eds., pp. 75-98, Birkhäuser, Basel, Switzerland, 2005. · Zbl 1098.34065 · doi:10.1007/3-7643-7359-8_4
[21] A. R. Sims, “Secondary conditions for linear differential operators of the second order,” Journal of Mathematics and Mechanics, vol. 6, pp. 247-285, 1957. · Zbl 0077.29201
[22] F. V. Atkinson, Discrete and Continuous Boundary Problems, vol. 8 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1964. · Zbl 0117.05806
[23] S. Clark and F. Gesztesy, “Weyl-Titchmarsh M-function asymptotics for matrix-valued Schrödinger operators,” Proceedings of the London Mathematical Society, vol. 82, no. 3, pp. 701-724, 2001. · Zbl 1025.34021 · doi:10.1112/plms/82.3.701
[24] W. N. Everitt, D. B. Hinton, and J. K. Shaw, “The asymptotic form of the Titchmarsh-Weyl coefficient for Dirac systems,” Journal of the London Mathematical Society, vol. 27, no. 3, pp. 465-476, 1983. · Zbl 0489.34010 · doi:10.1112/jlms/s2-27.3.465
[25] D. B. Hinton and A. Schneider, “On the Titchmarsh-Weyl coefficients for singular S-Hermitian systems. I,” Mathematische Nachrichten, vol. 163, pp. 323-342, 1993. · Zbl 0806.34023 · doi:10.1002/mana.19931630127
[26] D. B. Hinton and A. Schneider, “On the Titchmarsh-Weyl coefficients for singular S-Hermitian systems. II,” Mathematische Nachrichten, vol. 185, pp. 67-84, 1997. · Zbl 0869.34019 · doi:10.1002/mana.3211850107
[27] D. B. Hinton and J. K. Shaw, “On Titchmarsh-Weyl M(\lambda )-functions for linear Hamiltonian systems,” Journal of Differential Equations, vol. 40, no. 3, pp. 316-342, 1981. · Zbl 0472.34014 · doi:10.1016/0022-0396(81)90002-4
[28] D. B. Hinton and J. K. Shaw, “On the spectrum of a singular Hamiltonian system,” Quaestiones Mathematicae, vol. 5, no. 1, pp. 29-81, 1983. · Zbl 0509.34018 · doi:10.1080/16073606.1982.9631879
[29] D. B. Hinton and J. K. Shaw, “Parameterization of the M(\lambda ) function for a Hamiltonian system of limit circle type,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 93, no. 3-4, pp. 349-360, 1983. · Zbl 0532.34011
[30] D. B. Hinton and J. K. Shaw, “On boundary value problems for Hamiltonian systems with two singular points,” SIAM Journal on Mathematical Analysis, vol. 15, no. 2, pp. 272-286, 1984. · Zbl 0539.34016 · doi:10.1137/0515022
[31] D. B. Hinton and J. K. Shaw, “On the spectrum of a singular Hamiltonian system. II,” Quaestiones Mathematicae, vol. 10, no. 1, pp. 1-48, 1986. · Zbl 0615.34016 · doi:10.1080/16073606.1986.9631590
[32] V. I. Kogan and F. S. Rofe-Beketov, “On square-integrable solutions of symmetric systems of differential equations of arbitrary order,” Proceedings of the Royal Society of Edinburgh. Section A, vol. 74, pp. 5-40, 1976. · Zbl 0333.34021
[33] A. M. Krall, “M(\lambda ) theory for singular Hamiltonian systems with two singular points,” SIAM Journal on Mathematical Analysis, vol. 20, no. 3, pp. 701-715, 1989. · Zbl 0694.34013 · doi:10.1137/0520048
[34] A. M. Krall, “A limit-point criterion for linear Hamiltonian systems,” Applicable Analysis, vol. 61, no. 1-2, pp. 115-119, 1996. · Zbl 0876.34027 · doi:10.1080/00036819608840449
[35] M. Lesch and M. Malamud, “On the deficiency indices and self-adjointness of symmetric Hamiltonian systems,” Journal of Differential Equations, vol. 189, no. 2, pp. 556-615, 2003. · Zbl 1016.37026 · doi:10.1016/S0022-0396(02)00099-2
[36] J. Qi and S. Chen, “Strong limit-point classification of singular Hamiltonian expressions,” Proceedings of the American Mathematical Society, vol. 132, no. 6, pp. 1667-1674, 2004. · Zbl 1054.34041 · doi:10.1090/S0002-9939-04-07037-6
[37] C. Remling, “Geometric characterization of singular self-adjoint boundary conditions for Hamiltonian systems,” Applicable Analysis, vol. 60, no. 1-2, pp. 49-61, 1996. · Zbl 0872.34010 · doi:10.1080/00036819608840417
[38] Y. Shi, “On the rank of the matrix radius of the limiting set for a singular linear Hamiltonian system,” Linear Algebra and Its Applications, vol. 376, pp. 109-123, 2004. · Zbl 1047.37041 · doi:10.1016/j.laa.2003.06.008
[39] R. Nevanlinna, “Asymptotische Entwicklungen beschränkter Funktionen und das Stieltjessche Momenten problem,” Annales Academiæ Scientiarum Fennicæ A, vol. 18, no. 5, p. 53, 1922 (German). · JFM 48.1226.02
[40] D. B. Hinton and R. T. Lewis, “Spectral analysis of second order difference equations,” Journal of Mathematical Analysis and Applications, vol. 63, no. 2, pp. 421-438, 1978. · Zbl 0392.39001 · doi:10.1016/0022-247X(78)90088-4
[41] A. B. Mingarelli, “A limit-point criterion for a three-term recurrence relation,” Comptes Rendus Mathématiques de l’Académie des Sciences, vol. 3, no. 3, pp. 171-175, 1981. · Zbl 0497.39002
[42] H. Sun and Y. Shi, “Strong limit point criteria for a class of singular discrete linear Hamiltonian systems,” Journal of Mathematical Analysis and Applications, vol. 336, no. 1, pp. 224-242, 2007. · Zbl 1132.39014 · doi:10.1016/j.jmaa.2007.02.058
[43] J. Weiss, “Limit-point criteria for a second order dynamic equation on time scales,” Nonlinear Dynamics and Systems Theory of Research and Surveys, vol. 9, no. 1, pp. 99-108, 2009. · Zbl 1178.34033
[44] W. Kratz, R. \vSimon Hilscher, and V. Zeidan, “Eigenvalue and oscillation theorems for time scale symplectic systems,” International Journal of Dynamical Systems and Differential Equations, vol. 3, no. 1-2, pp. 84-131, 2011. · Zbl 1218.34039 · doi:10.1504/IJDSDE.2011.038497
[45] C. D. Ahlbrandt, M. Bohner, and J. Ridenhour, “Hamiltonian systems on time scales,” Journal of Mathematical Analysis and Applications, vol. 250, no. 2, pp. 561-578, 2000. · Zbl 0966.39010 · doi:10.1006/jmaa.2000.6992
[46] O. Do, S. Hilger, and R. Hilscher, “Symplectic dynamic systems,” in Advances in Dynamic Equations on Time Scales, M. Bohner and A. Peterson, Eds., pp. 293-334, Birkhäuser, Boston, Mass, USA, 2003.
[47] R. Hilscher and V. Zeidan, “Time scale symplectic systems without normality,” Journal of Differential Equations, vol. 230, no. 1, pp. 140-173, 2006. · Zbl 1104.37037 · doi:10.1016/j.jde.2006.06.010
[48] R. Hilscher and V. Zeidan, “Applications of time scale symplectic systems without normality,” Journal of Mathematical Analysis and Applications, vol. 340, no. 1, pp. 451-465, 2008. · Zbl 1145.39006 · doi:10.1016/j.jmaa.2007.07.077
[49] R. Hilscher and V. Zeidan, “Riccati equations for abnormal time scale quadratic functionals,” Journal of Differential Equations, vol. 244, no. 6, pp. 1410-1447, 2008. · Zbl 1355.49031 · doi:10.1016/j.jde.2007.10.012
[50] R. Hilscher and V. Zeidan, “Reid roundabout theorems for time scale symplectic systems,” in “Discrete Dynamics and Difference Equations”, Proceedings of the 12th International Conference on Difference Equations and Applications (Lisbon, 2007), S. Elaydi, H. Oliveira, J. M. Ferreira, and J. F. Alves, Eds., World Scientific Publishing, London, UK, 2010. · Zbl 1229.34138
[51] R. Hilscher and P. Zemánek, “Trigonometric and hyperbolic systems on time scales,” Dynamic Systems and Applications, vol. 18, no. 3-4, pp. 483-505, 2009. · Zbl 1184.34089
[52] M. Bohner and A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, Birkhäuser, Boston, Mass, USA, 2001. · Zbl 0978.39001
[53] S. Hilger, “Analysis on measure chains–a unified approach to continuous and discrete calculus,” Results in Mathematics, vol. 18, no. 1-2, pp. 18-56, 1990. · Zbl 0722.39001 · doi:10.1007/BF03323153
[54] R. Hilscher and V. Zeidan, “Time scale embedding theorem and coercivity of quadratic functionals,” Analysis, vol. 28, no. 1, pp. 1-28, 2008. · Zbl 1136.49017 · doi:10.1524/anly.2008.0900
[55] F. R. Gantmacher, The Theory of Matrices. Vol. 1, AMS Chelsea Publishing, Providence, RI, USA, 1998, translated from the Russian by K. A. Hirsch. Reprint of the 1959 translation. · Zbl 0927.15002
[56] D. S. Bernstein, Matrix Mathematics. Theory, Facts, and Formulas with Application to Linear Systems Theory, Princeton University Press, Princeton, NJ, USA, 2005. · Zbl 1075.15001
[57] O. Do and R. Hilscher, “Disconjugacy, transformations and quadratic functionals for symplectic dynamic systems on time scales,” Journal of Difference Equations and Applications, vol. 7, no. 2, pp. 265-295, 2001. · Zbl 0989.34027 · doi:10.1080/10236190108808273
[58] C. D. Ahlbrandt and A. C. Peterson, Discrete Hamiltonian Systems: Difference Equations, Continued Fractions, and Riccati Equations, vol. 16 of Kluwer Texts in the Mathematical Sciences, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1996. · Zbl 0860.39001
[59] M. Bohner and O. Do, “Disconjugacy and transformations for symplectic systems,” The Rocky Mountain Journal of Mathematics, vol. 27, no. 3, pp. 707-743, 1997. · Zbl 0894.39005 · doi:10.1216/rmjm/1181071889
[60] W. Kratz, Quadratic Functionals in Variational Analysis and Control Theory, vol. 6 of Mathematical Topics, Akademie, Berlin, Germany, 1995. · Zbl 0842.49001
[61] P. Piccione and D. V. Tausk, “Index theorems for symplectic systems,” Nonlinear Analysis: Theory, Methods & Applications, vol. 47, no. 5, pp. 3031-3046, 2001. · Zbl 1042.58506 · doi:10.1016/S0362-546X(01)00423-0
[62] R. P. Agarwal, M. Bohner, and P. J. Y. Wong, “Sturm-Liouville eigenvalue problems on time scales,” Applied Mathematics and Computation, vol. 99, no. 2-3, pp. 153-166, 1999. · Zbl 0938.34015 · doi:10.1016/S0096-3003(98)00004-6
[63] M. Bohner and R. Hilscher, “An eigenvalue problem for linear Hamiltonian dynamic systems,” Fasciculi Mathematici, no. 35, pp. 35-49, 2005. · Zbl 1096.39017
[64] W. T. Reid, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1971. · Zbl 0212.10901
[65] R. Hilscher, V. Zeidan, and W. Kratz, “Differentiation of solutions of dynamic equations on time scales with respect to parameters,” Advances in Dynamical Systems and Applications, vol. 4, no. 1, pp. 35-54, 2009.
[66] S. A. Orlov, “Nested matrix discs that depend analytically on a parameter, and theorems on the invariance of the ranks of the radii of the limit matrix discs,” Izvestiya Akademii Nauk SSSR. Seriya Matematicheskaya, vol. 40, no. 3, pp. 593-644, 710, 1976 (Russian), translated in Mathematics of the USSR-Izvestiya, vol. 10, pp. 565-613, 1976.
[67] Z. Zheng, J. Qi, and S. Chen, “Eigenvalues below the lower bound of minimal operators of singular Hamiltonian expressions,” Computers & Mathematics with Applications, vol. 56, no. 11, pp. 2825-2833, 2008. · Zbl 1165.34425 · doi:10.1016/j.camwa.2008.05.043
[68] F. M. Atici and G. S. Guseinov, “On Green’s functions and positive solutions for boundary value problems on time scales,” Journal of Computational and Applied Mathematics, vol. 141, no. 1-2, pp. 75-99, 2002. · Zbl 1007.34025 · doi:10.1016/S0377-0427(01)00437-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.