×

Beyond Adomian method: the variational iteration method for solving heat-like and wave-like equations with variable coefficients. (English) Zbl 1217.35091

Summary: Recently Adomian method was used to solve various kinds of heat-like and wave-like equations. In this Letter, an alternative approach called the variational iteration method is presented to overcome the demerit of complex calculation of Adomian polynomial. Some examples are given to show the reliability and the efficiency of the variational iteration method.

MSC:

35K05 Heat equation
45L05 Theoretical approximation of solutions to integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Holliday, J. R.; Rundle, J. B.; Tiampo, K. F., Tectonophysics, 413, 87 (2006)
[2] Akhmetov, A. A., Cryogenics, 43, 317 (2003)
[3] Manolis, G. D.; Rangelov, T. V., Soil Dynam. Earthquake Engrg., 26, 952 (2006)
[4] Nochetto, R. H.; Pyo, J. H., Math. Comput., 74, 521 (2005)
[5] Wazwaz, A. M.; Gorguis, A., Appl. Math. Comput., 149, 15 (2004)
[6] Gorguis, A., Appl. Math. Comput., 173, 126 (2006)
[7] Momani, S., Appl. Math. Comput., 165, 459 (2005)
[8] Tatari, M.; Dehghan, M., Phys. Scr., 73, 6, 672 (2006)
[9] Dehghan, M.; Tatari, M., Phys. Scr., 73, 3, 240 (2006)
[10] Yahaya, F.; Hashim, I.; Ismail, E. S., Int. J. Nonlinear Sci. Numer. Simul., 8, 385 (2007)
[11] Dehghan, M.; Tatari, M., Phys. Scr., 74, 3, 310 (2006)
[12] Odibat, Z. M.; Momani, S., Int. J. Nonlinear Sci. Numer. Simul., 7, 27 (2006)
[13] Bildik, N.; Konuralp, A., Int. J. Nonlinear Sci. Numer. Simul., 7, 65 (2006)
[14] Sweilam, N. H.; Khader, M. M., Chaos Solitons Fractals, 32, 145 (2007)
[15] Momani, S.; Odibat, Z., Chaos Solitons Fractals, 31, 1248 (2007)
[16] Soliman, A. A., Chaos Solitons Fractals, 29, 294 (2006)
[17] Abulwafa, E. M.; Abdou, M. A.; Mahmoud, A. A., Chaos Solitons Fractals, 29, 313 (2006)
[18] Momani, S.; Abuasad, S., Chaos Solitons Fractals, 27, 1119 (2006)
[19] Yusufoglu, E., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 153 (2007)
[20] Tari, H.; Ganji, D. D.; Rostamian, M., Int. J. Nonlinear Sci. Numer. Simul., 8, 2, 203 (2007)
[21] He, J.-H., Int. J. Non-Linear Mech., 34, 699 (1999)
[22] He, J.-H., Int. J. Mod. Phys. B, 20, 1141 (2006)
[23] He, J.-H.; Wu, X. H., Chaos Solitons Fractals, 29, 108 (2006)
[24] Merlani, A. L.; Natale, G.; Salusti, E., Geophys. Astrophys. Fluid Dyn., 85, 1-2, 97 (1997)
[25] Natale, G., Pure Appl. Geophys., 152, 2, 193 (1998)
[26] Wazwaz, A. M., J. Comput. Appl. Math., 207, 129 (2007)
[27] He, J. H., J. Comput. Appl. Math., 207, 3 (2007)
[28] Biazar, J.; Ghazvini, H., Int. J. Nonlinear Sci. Numer. Simul., 81, 311 (2007)
[29] Gorji, M.; Ganji, D. D.; Soleimai, S., Int. J. Nonlinear Sci. Numer. Simul., 8, 319 (2007)
[30] Sadigi, A.; Ganji, D. D., Int. J. Nonlinear Sci. Numer. Simul., 8, 435 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.