zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The multisoliton solutions for the nonisospectral mKPI equation with self-consistent sources. (English) Zbl 1217.35141
Summary: The nonisospectral mKPI equation with self-consistent sources is derived through the linear problem of the nonisospectral mKPI system. The bilinear form of the nonisospectral mKPI equation with self-consistent sources is given and the $N$-soliton solutions are obtained through Hirota method and Wronskian technique respectively.

35Q35PDEs in connection with fluid mechanics
37J35Completely integrable systems, topological structure of phase space, integration methods
35Q51Soliton-like equations
58J53Isospectrality (PDE on manifolds)
Full Text: DOI
[1] Mel’nikov, V. K.: Phys. lett. A. 118, 22 (1986)
[2] Mel’nikov, V. K.: Commun. math. Phys.. 112, 639 (1987)
[3] Mel’nikov, V. K.: J. math. Phys.. 31, 1106 (1990)
[4] Mel’nikov, V. K.: Commun. math. Phys.. 120, 451 (1989)
[5] Mel’nikov, V. K.: Commun. math. Phys.. 126, 201 (1989)
[6] Leon, J.; Latifi, A.: J. phys. A. 23, 1385 (1990)
[7] Zeng, Y. B.; Ma, W. X.; Lin, R. L.: J. math. Phys.. 41, 5453 (2000)
[8] Lin, R. L.; Zeng, Y. B.; Ma, W. X.: Physica A. 291, 287 (2001)
[9] Xiao, T.; Zeng, Y. B.: Physica A. 353, 38 (2005)
[10] Zhang, D. J.; Chen, D. Y.: Chaos solitons fractals. 18, 31 (2003)
[11] Deng, S. F.; Chen, D. Y.; Zhang, D. J.: J. phys. Soc. jpn.. 79, 2184 (2003)
[12] Ma, W. X.: Chaos solitons fractals. 26, 1453 (2005)
[13] Ma, W. X.: J. phys. Soc. jpn.. 72, 3017 (2003)
[14] Ma, W. X.: J. math. Phys.. 33, 2464 (1992)
[15] Ma, W. X.: Phys. lett. A. 179, 179 (1993)
[16] David, D.; Levi, D.; Winterminta, P.: Stud. appl. Math.. 76, 133 (1987)
[17] Chan, W. L.; Li, K. S.; Li, Y. S.: J. math. Phys.. 33, 3759 (1992)
[18] Fan, E. G.; Zhang, H. Q.; Lin, G.: Acta phys. Sinica. 7, 649 (1998)
[19] Hirota, R.: Phys. rev. Lett.. 27, 1192 (1971)
[20] Freeman, N. C.; Nimmo, J. J. C.: Phys. lett. A. 95, 1 (1983)
[21] Deng, S. F.: J. phys. A. 39, 14929 (2006)
[22] Deng, S. F.: Phys. lett. A. 362, 198 (2007)