zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Dynamic analysis of a nonlinear Timoshenko equation. (English) Zbl 1217.35184
Summary: We characterize the global and nonglobal solutions of the Timoshenko equation in a bounded domain. We consider nonlinear dissipation and a nonlinear source term. We prove blowup of solutions as well as convergence to the zero and nonzero equilibria, and we give rates of decay to the zero equilibrium. In particular, we prove instability of the ground state. We show existence of global solutions without a uniform bound in time for the equation with nonlinear damping. We define and use a potential well and positive invariant sets.

MSC:
35Q74PDEs in connection with mechanics of deformable solids
74K10Rods (beams, columns, shafts, arches, rings, etc.) in solid mechanics
WorldCat.org
Full Text: DOI
References:
[1] J. Ball, “Initial-boundary value problems for an extensible beam,” Journal of Mathematical Analysis and Applications, vol. 42, pp. 61-90, 1973. · Zbl 0254.73042 · doi:10.1016/0022-247X(73)90121-2
[2] J. Ball, “Stability theory for an extensible beam,” Journal of Differential Equations, vol. 14, pp. 399-418, 1973. · Zbl 0247.73054 · doi:10.1016/0022-0396(73)90056-9
[3] A. Haraux and E. Zuazua, “Decay estimates for some semilinear damped hyperbolic problems,” Archive for Rational Mechanics and Analysis, vol. 100, no. 2, pp. 191-206, 1988. · Zbl 0654.35070 · doi:10.1007/BF00282203
[4] J. K. Hale, Asymptotic Behavior of Dissipative Systems, vol. 25 of Mathematical Surveys and Monographs, American Mathematical Society, Providence, Rhode Island, 1988. · Zbl 0642.58013
[5] A. Haraux, Semilinear Hyperboloic Problems in Bounded Domains, vol. 3 of Mathematical Reports, Harwood Academic Publishers, London, UK, 1987. · Zbl 0875.35054
[6] L. E. Payne and D. H. Sattinger, “Saddle points and instability of nonlinear hyperbolic equations,” Israel Journal of Mathematics, vol. 22, no. 3-4, pp. 273-303, 1975. · Zbl 0317.35059 · doi:10.1007/BF02761595
[7] V. Georgiev and G. Todorova, “Existence of a solution of the wave equation with nonlinear damping and source terms,” Journal of Differential Equations, vol. 109, no. 2, pp. 295-308, 1994. · Zbl 0803.35092 · doi:10.1006/jdeq.1994.1051
[8] R. Ikehata, “Some remarks on the wave equations with nonlinear damping and source terms,” Nonlinear Analysis, Theory, Methods & Applications, vol. 27, no. 10, pp. 1165-1175, 1996. · Zbl 0866.35071 · doi:10.1016/0362-546X(95)00119-G
[9] C. O. Alves and M. M. Cavalcanti, “On existence, uniform decay rates and blow up for solutions of the 2-D wave equation with exponential source,” Calculus of Variations and Partial Differential Equations, vol. 34, no. 3, pp. 377-411, 2009. · Zbl 1172.35043 · doi:10.1007/s00526-008-0188-z
[10] V. Barbu, I. Lasiecka, and M. A. Rammaha, “Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms,” Indiana University Mathematics Journal, vol. 56, no. 3, pp. 995-1021, 2007. · Zbl 1121.35082 · doi:10.1512/iumj.2007.56.2990
[11] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Prates Filho, and J. A. Soriano, “Existence and exponential decay for a Kirchhoff-Carrier model with viscosity,” Journal of Mathematical Analysis and Applications, vol. 226, no. 1, pp. 40-60, 1998. · Zbl 0914.35081 · doi:10.1006/jmaa.1998.6057
[12] M. M. Cavalcanti, “Existence and uniform decay for the Euler-Bernoulli viscoelastic equation with nonlocal boundary dissipation,” Discrete and Continuous Dynamical Systems, vol. 8, no. 3, pp. 675-695, 2002. · Zbl 1009.74034 · doi:10.3934/dcds.2002.8.675
[13] M. M. Cavalcanti and V. N. Domingos Cavalcanti, “Existence and asymptotic stability for evolution problems on manifolds with damping and source terms,” Journal of Mathematical Analysis and Applications, vol. 291, no. 1, pp. 109-127, 2004. · Zbl 1073.35168 · doi:10.1016/j.jmaa.2003.10.020
[14] M. M. Cavalcanti, V. N. Domingos Cavalcanti, and P. Martinez, “Existence and decay rate estimates for the wave equation with nonlinear boundary damping and source term,” Journal of Differential Equations, vol. 203, no. 1, pp. 119-158, 2004. · Zbl 1049.35047 · doi:10.1016/j.jde.2004.04.011
[15] M. M. Cavalcanti, V. N. Domingos Cavalcanti, and J. A. Soriano, “Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation,” Communications in Contemporary Mathematics, vol. 6, no. 5, pp. 705-731, 2004. · Zbl 1072.74047 · doi:10.1142/S0219199704001483
[16] M. M. Cavalcanti, V. N. Domingos Cavalcanti, and I. Lasiecka, “Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction,” Journal of Differential Equations, vol. 236, no. 2, pp. 407-459, 2007. · Zbl 1117.35048 · doi:10.1016/j.jde.2007.02.004
[17] M. A. Rammaha, “The influence of damping and source terms on solutions of nonlinear wave equations,” Boletim da Sociedade Paranaense de Matemática, vol. 25, no. 1-2, pp. 77-90, 2007. · Zbl 1168.35394 · doi:10.5269/bspm.v25i1-2.7427
[18] M. A. Rammaha and S. Sakuntasathien, “Global existence and blow up of solutions to systems of nonlinear wave equations with degenerate damping and source terms,” Nonlinear Analysis, Theory, Methods & Applications, vol. 72, no. 5, pp. 2658-2683, 2010. · Zbl 1190.35144 · doi:10.1016/j.na.2009.11.013
[19] G. Todorova and E. Vitillaro, “Blow-up for nonlinear dissipative wave equations in \Bbb Rn,” Journal of Mathematical Analysis and Applications, vol. 303, no. 1, pp. 242-257, 2005. · Zbl 1065.35200 · doi:10.1016/j.jmaa.2004.08.039
[20] E. Vitillaro, “Global existence for the wave equation with nonlinear boundary damping and source terms,” Journal of Differential Equations, vol. 186, no. 1, pp. 259-298, 2002. · Zbl 1016.35048 · doi:10.1016/S0022-0396(02)00023-2
[21] D. Bainov and E. Minchev, “Upper estimate of the interval of existence of solutions of a nonlinear Timoshenko equation,” Georgian Mathematical Journal, vol. 4, no. 3, pp. 219-222, 1997. · Zbl 0876.35076 · doi:10.1023/A:1022945512181 · emis:journals/GMJ/vol4/contents.htm · eudml:47741
[22] J. A. Esquivel-Avila, “The dynamics around the ground state of the Timoshenko equation with a source term,” in Dynamic systems and Applications, vol. 4, pp. 198-205, Dynamic, Atlanta, Ga, USA, 2003. · Zbl 1068.35070
[23] J. A. Esquivel-Avila, “A characterization of global and nonglobal solutions of nonlinear wave and Kirchhoff equations,” Nonlinear Analysis, Theory, Methods & Applications, vol. 52, no. 4, pp. 1111-1127, 2003. · Zbl 1023.35076 · doi:10.1016/S0362-546X(02)00155-4
[24] J. A. Esquivel-Avila, “The dynamics of a nonlinear wave equation,” Journal of Mathematical Analysis and Applications, vol. 279, no. 1, pp. 135-150, 2003. · Zbl 1015.35072 · doi:10.1016/S0022-247X(02)00701-1
[25] J. A. Esquivel-Avila, “Qualitative analysis of a nonlinear wave equation,” Discrete and Continuous Dynamical Systems, vol. 10, no. 3, pp. 787-804, 2004. · Zbl 1047.35103 · doi:10.3934/dcds.2004.10.787
[26] J. Ball, “On the asymptotic behavior of generalized processes, with applications to nonlinear evolution equations,” Journal of Differential Equations, vol. 27, no. 2, pp. 224-265, 1978. · Zbl 0376.35002 · doi:10.1016/0022-0396(78)90032-3
[27] H. Brézis, Analyse Fonctionnelle, Théorie et Applications, Masson, Paris, France, 1983. · Zbl 0511.46001