zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Projective synchronization of fractional order chaotic system based on linear separation. (English) Zbl 1217.37035
Summary: This Letter analyses the dynamical behavior of fractional order unified system, based on the stability criterion of linear systems, a new approach for constructing projective synchronization of fractional order unified system is proposed. Numerical simulations of fractional order Chen system, fractional order Lü system and fractional order Lorenz-like system are achieved via the linear separation method.

37D45Strange attractors, chaotic dynamics
34A08Fractional differential equations
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, No. 8, 821 (1990)
[2] Carroll, T. L.; Pecora, L. M.: IEEE trans. Circuits syst.. 38, No. 4, 453 (1991)
[3] Chen, G.; Dong, X.: IEEE trans. Circuits syst.. 40, No. 9, 591 (1993)
[4] Fuh, C. C.; Tung, P. C.: Phys. rev. Lett.. 75, No. 16, 2952 (1995)
[5] Chen, G.; Dong, X.: From chaos to order: methodologies, perspectives and applications. (1998) · Zbl 0908.93005
[6] Wang, G. R.; Yu, X. L.; Chen, S. G.: Chaotic control, synchronization and utilizing. (2001)
[7] Wang, X. Y.: Chaos in the complex nonlinearity system. (2003)
[8] Shinbrot, T.; Grebogi, C.; Ott, E.: Nature. 363, No. 6, 411 (1993)
[9] Michael, G. R.; Arkady, S. P.; Jurgen, K.: Lett. phys. Rev.. 78, No. 22, 4193 (1997)
[10] Yu, X.; Song, Y.: Int. J. Bifur. chaos. 11, No. 6, 1737 (2001)
[11] Yang, X. S.: Appl. math. Comput.. 122, No. 1, 71 (2001)
[12] Ho, M. C.; Hung, Y. C.; Chou, C. H.: Phys. lett. A. 296, No. 1, 43 (2002)
[13] Shahverdiev, E. M.; Sivaprakasam, S.; Shore, K. A.: Phys. lett. A. 292, No. 6, 320 (2002)
[14] Mainieri, R.; Rehacek, J.: Phys. rev. Lett.. 82, No. 15, 3042 (1999)
[15] Xu, D. L.: Phys. lett. E. 63, No. 2, 027201 (2001)
[16] Chee, C. Y.; Xu, D. L.: Chaos solitons fractals. 23, No. 4, 1063 (2005)
[17] Caputo, M.: Geophys. J. R. astron. Soc.. 13, 529 (1967)
[18] Lü, J.; Chen, G.; Cheng, D.: Int. J. Bifur. chaos. 12, No. 12, 2917 (2002)
[19] Benettin, G.; Galgani, L.; Giorgilli, A.: Meccanica. 15, No. 1, 9 (1980)