zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Full state hybrid lag projective synchronization in chaotic (hyperchaotic) systems. (English) Zbl 1217.37037
Summary: This Letter introduces another novel type of chaos synchronization-full state hybrid lag projective synchronization (FSHLPS), which includes complete synchronization, anti-synchronization, lag synchronization, general projective synchronization and FSHPS in [{\it M. Hu, Z. Xu} and {\it R. Zhang}, Commun. Nonlinear Sci. Numer. Simul. 13, No. 2, 456--464 (2008; Zbl 1123.37013); {\it M. Hu, Z. Xu, R. Zhang} and {\it A. Hu}, ibid. 361, No. 3, 231--237 (2007)]. Furthermore, systematic FSHLPS schemes are respectively proposed for the continuous and discrete systems. Finally, some numerical simulations are given to verify the effectiveness of the developed schemes.

37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Pecora, L. M.; Carroll, T. L.: Phys. rev. Lett.. 64, 821 (1990)
[2] Carroll, T. L.; Pecora, L. M.: IEEE trans. Circuits syst. I. 38, 453 (1991)
[3] Chen, S.; Zhang, Q.; Xie, J.: Chaos solitons fractals. 20, 947 (2004)
[4] Chen, X.; Lu, J.: Phys. lett. A. 364, 123 (2007)
[5] J.H. Park, J. Comput. Appl. Math., in press
[6] Han, Q.: Phys. lett. A. 360, 563 (2007)
[7] Li, G.; Zhou, S.; Yang, K.: Phys. lett. A. 355, 326 (2006)
[8] Chen, H. K.: Chaos solitons fractals. 23, 1245 (2005)
[9] Yan, Z.: Phys. lett. A. 343, 423 (2005)
[10] Wen, G.; Xu, D.: Chaos solitons fractals. 26, 71 (2005)
[11] Hu, M.; Xu, Z.; Zhang, R.: Commun. nonlinear sci. Numer. simul.. 13, 456 (2008)
[12] Hu, M.; Xu, Z.; Zhang, R.; Hu, A.: Phys. lett. A. 361, 231 (2007)
[13] Rössler, O. E.: Phys. lett. A. 71, 155 (1979)
[14] Li, Y.; Wallace; Tang, S.; Chen, G.: Int. J. Circ. theory appl.. 33, 235 (2005)
[15] Stefański, K.: Chaos solitons fractals. 9, 83 (1998) · Zbl 0934.37033
[16] Baier, G.; Klein, M.: Phys. lett. A. 151, 281 (1990)