×

Application of He’s variational iteration method in nonlinear boundary value problems in enzyme-substrate reaction diffusion processes. I: The steady-state amperometric response. (English) Zbl 1217.65233

Summary: A mathematical model of amperometric biosensors is developed. He’s variational iteration method is implemented to give approximate and analytical solutions of non-linear reaction diffusion equations containing a non linear term related to Michaelis-Menten kinetic of the enzymatic reaction. The variational iteration method which produces the solutions in terms of convergent series, requiring no linearization or small perturbation. These analytical results are compared with available limiting case result and are found to be in good agreement.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
92-08 Computational methods for problems pertaining to biology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lyons, M.E.G., Greer, J.C., Fitzgerald, C.A., Bannon, T., Bartlett, P.N.: Analyst 121, 715 (1996) · doi:10.1039/an9962100715
[2] Lyons, M.E.G., Bannon, T., Hinds, G., Rebouillat, S.: Analyst 123, 1947 (1998) · doi:10.1039/a803274b
[3] A.R. Hillman, in Electrochemical Science and Technology of Polymers, ed. by R.G. Linford (Elsevier, Amsterdam, 1987), pp. 103–291
[4] Lyons, M.E.G.: Electrochemistry novel interfaces and macromolecular electroactive systems. Ann. Rep. C. R. Soc. Chem. 87, 119–171 (1990)
[5] M.E.G. Lyons, in Electroactive Polymer Electrochemistry: Part I, Fundamentals, ed. by M.E.G. Lyons (Plenum Press, New York, 1994), pp. 237–374
[6] Lyons, M.E.G.: Analyst 119, 805 (1994) · doi:10.1039/an9941900805
[7] G.P. Evans, in Advances in Electrochemical Science and Engineering, vol. 1, ed. by H. Gerisher, C.W. Tobias (VCH, Weinheim, 1990), pp. 1–74
[8] Wring, S.A., Hart, J.P.: Analyst 117, 1215 (1992) · doi:10.1039/an9921701215
[9] C.P. Andrieux, J.M. Saveant, in Molecular Design of Electrode Surfaces, ed. by R.W. Murray. Techniques of Chemistry Series, vol. XXII (Wiley-Interscience, New York, 1992), pp. 207–270
[10] Albery, W.J., Hillman, A.R.: J. Electroanal. Chem. 170, 27 (1984) · doi:10.1016/0022-0728(84)80034-0
[11] Albery, W.J., Cass, A.E.G., Shu, Z.X.: Biosens. Bioelectron. 5, 367 (1990) · doi:10.1016/0956-5663(90)80016-7
[12] Albery, W.J., Cass, A.E.G., Shu, Z.X.: Biosens. Bioelectron. 5, 379 (1990) · doi:10.1016/0956-5663(90)80017-8
[13] Albery, W.J., Cass, A.E.G., Shu, Z.X.: Biosens. Bioelectron. 5, 397 (1990) · doi:10.1016/0956-5663(90)80018-9
[14] Bartlett, P.N., Birkin, P.R., Wallace, E.N.K.: J. Chem. Soc. Faraday Trans. 93, 1951–1960 (1997) · doi:10.1039/a700468k
[15] Bartlett, P.N., Gardner, J.W.: Phil. Trans. R. Soc. Lond. A 354, 35 (1996) · Zbl 0861.76084 · doi:10.1098/rsta.1996.0002
[16] G. Rahamathunissa, L. Rajendran, J. Theor. Comput. Chem. (2007) (in press)
[17] Coely, A. (eds) et al.: Backlund and Darboux Tranformation. American Mathematical Society, Providence, RI (2001)
[18] Wadati, M., Sanuki, H., Konno, K.: Prog. Theor. Phys. 53, 419 (1975) · Zbl 1079.35506 · doi:10.1143/PTP.53.419
[19] Gardner, C.S., Green, J.M., Kruskal, M.D., Miura, R.M.: Phys. Rev. Lett. 19, 1095 (1967) · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[20] Hirota, R.: Phys. Rev. Lett. 27, 1192 (1971) · Zbl 1168.35423 · doi:10.1103/PhysRevLett.27.1192
[21] Malfliet, W.: Am. J. Phys. 60, 650 (1992) · Zbl 1219.35246 · doi:10.1119/1.17120
[22] He, J.H.: J. Comput. Appl. Math. 207, 3 (2007) and reference therein · Zbl 1119.65049 · doi:10.1016/j.cam.2006.07.009
[23] Wang, S.-Q., He, J.-H.: Chaos Solitons Fractals 35(4), 688 (2008) · Zbl 1210.70023 · doi:10.1016/j.chaos.2007.07.055
[24] He, J.H.: Comput. Methods Appl. Mech. Eng. 167(1–2), 57 (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[25] He, J.H.: Int. J. Nonlinear Mech. 34(4), 699 (1999) · Zbl 1342.34005 · doi:10.1016/S0020-7462(98)00048-1
[26] He, J.H., Wu, X.H.: Chaos Solitons Fractals 29(1), 108 (2006) · Zbl 1147.35338 · doi:10.1016/j.chaos.2005.10.100
[27] He, J.-H., Abdou, M.A.: Chaos Solitons Fractals 34(5), 1421 (2007) · Zbl 1152.35441 · doi:10.1016/j.chaos.2006.05.072
[28] He, J.-H.: Chaos Solitons Fractals 34(5), 1430 (2007) · Zbl 1152.34327 · doi:10.1016/j.chaos.2006.10.026
[29] He, J.H.: Comm. Nonlinear Sci. Numer. Simulat. 2(4), 230 (1997) · doi:10.1016/S1007-5704(97)90007-1
[30] He, J.H.: Appl. Math. Comput. 114(2, 3), 115 (2000) · Zbl 1027.34009 · doi:10.1016/S0096-3003(99)00104-6
[31] Marinca, V.: Int. J. Nonlinear Sci. Numer. Simulat. 3, 107 (2002)
[32] He, J.H.: J. Comput. Appl. Math. 207, 1 (2007)
[33] A. Benyahia, S. Bacha, Numerical simulation of amperometric biosensors performances. Proceedings 16th European Simulation Symposium
[34] Pao, C.V.: Nonlinear Anal. Theor. 4(2), 369 (1979) · Zbl 0431.92014 · doi:10.1016/0362-546X(80)90061-9
[35] Baronas, R., Ivanauskas, F., Kulys, J., Sapagovas, M.: J. Math. Chem. 34, 227 (2003) · Zbl 1052.35093 · doi:10.1023/B:JOMC.0000004072.97338.12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.