Non-coherent attack on the ping-pong protocol with completely entangled pairs of qutrits. (English) Zbl 1217.81045

Summary: The non-coherent attack on the ping-pong protocol with completely entangled pairs of three-dimensional quantum systems (qutrits) is analyzed. The expression for the amount of the eavesdropper’s information as functions of attack detection probability is derived. It is shown that the security of the ping-pong protocol with pairs of qutrits is higher than the security of the protocol with pairs of qubits. It is also shown that with the use by legitimate users in a control mode of two mutually unbiased measuring bases, the ping-pong protocol with pairs of qutrits possesses only asymptotic security, as well as the protocol with entangled qubits.


81P94 Quantum cryptography (quantum-theoretic aspects)
94A60 Cryptography
Full Text: DOI arXiv


[1] Boström K., Felbinger T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)
[2] Boström K., Felbinger T.: On the security of the ping-pong protocol. Phys. Lett. A 372(22), 3953–3956 (2008) · Zbl 1220.81066
[3] Cai Q.Y.: The ”ping-pong” protocol can be attacked without eavesdropping. Phys. Rev. Lett. 91(10), 109801 (2003)
[4] Cai Q.Y., Li B.W.: Improving the capacity of the Boström-Felbinger protocol. Phys. Rev. A 69(5), 054301 (2004)
[5] Cai Q.Y., Li B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21(4), 601–603 (2004)
[6] Chamoli A., Bhandari C.M.: Secure direct communication based on ping-pong protocol. Quantum Inf. Process. 8(4), 347–356 (2009) · Zbl 1181.81030
[7] Deng F.G., Long G.L., Liu X.S.: Two-step quantum direct communication protocol using the Einstein–Podolsky–Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
[8] Deng F.G., Long G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70(1), 012311 (2004)
[9] Deng F.G., Long G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)
[10] Gao T., Yan F.L., Wang Z.X.: Deterministic secure direct communication using GHZ–states and swapping quantum entanglement. J. Phys. A Math. Theor. 38(25), 5761–5770 (2005) · Zbl 1073.81534
[11] Joo J., Rudolph T., Sanders B.C.: A heralded two-qutrit entangled state. J. Phys. B At. Mol. Opt. Phys. 42(11), 114007 (2009)
[12] Lee H., Lim J., Yang H.: Quantum direct communication with authentication. Phys. Rev. A 73(4), 042305 (2006)
[13] Li X.H., Deng F.G., Li C.Y. et al.: Deterministic secure quantum communication without maximally entangled states. J. Korean Phys. Soc. 49(4), 1354–1359 (2006)
[14] Li X.H., Deng F.G., Zhou H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74(5), 054302 (2006)
[15] Li X.H., Li C.Y., Deng F.G. et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. 16(8), 2149–2153 (2007)
[16] Lin S., Wen Q.Y., Gao F., Zhu F.C.: Quantum secure direct communication with chi-type entangled states. Phys. Rev. A 78(6), 064304 (2008)
[17] Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000) · Zbl 1049.81015
[18] Stinespring, W.F.: Positive functions on C*-algebras. In: Proceedings of the American Mathematical Society, vol. 6, pp. 211–216 (1955) · Zbl 0064.36703
[19] Thew R., Acin A., Zbinden H., Gisin N.: Experimental realization of entangled qutrits for quantum communication. Quantum Inf. Comput. 4(2), 093–101 (2004) · Zbl 1175.81014
[20] Vasiliu, E.V., Vasiliu, L.N.: Ping-pong protocol with three- and four-qubit Greenberger–Horne–Zeilinger states. Work. Odessa Polytech. Univ. 1(29), 171–176 (2008) (in Russian) http://nbuv.gov.ua/portal/natural/Popu/2008_1/3-4.pdf
[21] Vasiliu, E.V.: Asymptotic security of the ping-pong quantum direct communication protocol with three-qubit Greenberger–Horne–Zeilinger states. Georgian Elec. Sci. J. Comput. Sci. Telecomm. 3, 3–15 (2009) (in Russian) http://gesj.internet-academy.org.ge/gesj_articles/1427.pdf
[22] Vasiliu, E.V., Nikolaenko, S.V.: Synthesis of the secure system of direct messages transfer based on the ping-pong protocol of quantum communication. Sci. Work. Odessa Natl. Acad. Telecomm. 1, 83–91 (2009) (in Russian) http://sbornik.onat.edu.ua/?art=338
[23] Vaziri A., Pan J., Jennewein T., Weihs G., Zeilinger A.: Concentration of higher dimensional entanglement: Qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91(22), 227902 (2003)
[24] Wang Ch, Deng F.G., Long G.L.: Multi-step quantum secure direct communication using multi-particle Greenberger–Horne–Zeilinger state. Opt. Communic. 253(1), 15–20 (2005)
[25] Wang Ch, Deng F.G., Li Y.S., Liu X.S., Long G.L.: Quantum secure direct communication with high dimension quantum superdense coding. Phys. Rev. A 71(4), 044305 (2005)
[26] Wang J., Zhang Q., Tang C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Communic. 266(2), 732–737 (2006)
[27] Yan F.L., Zhang X.Q.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B 41(1), 75–78 (2004)
[28] Yen C.A., Horng S.J., Goan H.S. et al.: Quantum direct communication with mutual authentication. Quantum Inf. Comput. 9(5–6), 0376–0394 (2009) · Zbl 1172.81324
[29] Zhang Zh J., Li Y., Man Zh X.: Improved Wojcik’s eavesdropping attack on ping-pong protocol without eavesdropping-induced channel loss. Phys. Lett. A 341(5–6), 385–389 (2005) · Zbl 1171.81363
[30] Zhu A.D., Xia Y., Fan Q.B., Zhang S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73(2), 022338 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.