×

Analytic treatment of linear and nonlinear Schrödinger equations: a study with homotopy-perturbation and Adomian decomposition methods. (English) Zbl 1217.81069

Summary: In this work, two powerful analytical methods, called homotopy-perturbation method (HPM) and Adomian decomposition method (ADM) are introduced to obtain the exact solutions of linear and nonlinear Schrödinger equations. The main objective is to propose alternative methods of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. The results show that these methods are very efficient and convenient and can be applied to a large class of problems. The comparison of the methods shows that although the numerical results of these methods are the same, HPM is much easier, more convenient and efficient than ADM.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
35Q55 NLS equations (nonlinear Schrödinger equations)
81Q15 Perturbation theories for operators and differential equations in quantum theory
81U15 Exactly and quasi-solvable systems arising in quantum theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] He, J.H.; Wu, X.-H., Chaos solitons fractals, 30, 3, 700, (2006)
[2] He, J.H.; Abdou, M.A., Chaos solitons fractals, 34, 5, 1421, (2007)
[3] Wazwaz, A.M., Appl. math. comput., 166, 652, (2005)
[4] Wazwaz, A.M.; Gorguis, A., Appl. math. comput., 149, 15, (2004)
[5] Wazwaz, A.M., Appl. math. comput., 111, 53, (2000)
[6] Lesnic, D., Chaos solitons fractals, 28, 776, (2006)
[7] Saha Ray, S., Appl. math. comput., 175, 1046, (2006)
[8] He, J.H., Int. J. non-linear mech., 34, 699, (1999)
[9] He, J.H., Appl. math. comput., 114, 115, (2000)
[10] Ganji, D.D.; Sadighi, A., J. comput. appl. math., 207, 1, 24, (2007)
[11] He, J.H., Int. J. non-linear mech., 35, 1, 37, (2000)
[12] He, J.H., Int. J. mod. phys. B, 20, 18, 2561, (2006)
[13] He, J.H., Appl. math. comput., 135, 1, 73, (2003)
[14] He, J.H., Phys. lett. A, 350, 1-2, 87, (2006)
[15] He, J.H., Int. J. nonlinear sci. numer. simul., 6, 2, 207, (2005)
[16] Ganji, D.D.; Sadighi, A., Int. J. nonlinear sci. numer. simul., 7, 4, 413, (2006)
[17] He, J.H., Int. J. mod. phys. B, 20, 10, 1141, (2006)
[18] He, J.H., Non-perturbative methods for strongly nonlinear problems, (2006), dissertation.de-Verlag im Internet GmbH Berlin
[19] Rajabi, A.; Ganji, D.D.; Taherian, H., Phys. lett. A, 360, 4-5, 570, (2007)
[20] Ganji, D.D., Phys. lett. A, 355, 4-5, 337, (2006)
[21] Siddiqui, A.M.; Mahmood, R.; Ghori, Q.K., Phys. lett. A, 352, 404, (2006) · Zbl 1187.76622
[22] Shakeri, F.; Dehghan, M., Phys. scr., 75, 551, (2007)
[23] Dehghan, M.; Shakeri, F., Phys. scr., 75, 778, (2007)
[24] Dehghan, M.; Shokri, A., Comput. math. appl., 54, 1, 136, (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.