Yomba, Emmanuel The sub-ODE method for finding exact travelling wave solutions of generalized nonlinear Camassa-Holm, and generalized nonlinear Schrödinger equations. (English) Zbl 1217.81074 Phys. Lett., A 372, No. 3, 215-222 (2008). Summary: With the aid of the ordinary differential equation (ODE) involving an arbitrary positive power of dependent variable proposed by Li and Wang and an indirect F-function method very close to the F-expansion method, we solve the generalized Camassa-Holm equation with fully nonlinear dispersion and fully nonlinear convection \(C(l,n,p)\) and the generalized nonlinear Schrödinger equation with nonlinear dispersion GNLS\((l,n,p,q)\). Taking advantage of the new subsidiary ODE, this F-function method is used to map the solutions of \(C(l,n,p)\) and GNLS\((l,n,p,q)\) equations to those of that nonlinear ODE. As result, we can successfully obtain in a unified way, many exact solutions. Cited in 16 Documents MSC: 81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics 35Q55 NLS equations (nonlinear Schrödinger equations) 76D33 Waves for incompressible viscous fluids 35Q35 PDEs in connection with fluid mechanics Software:RATH PDF BibTeX XML Cite \textit{E. Yomba}, Phys. Lett., A 372, No. 3, 215--222 (2008; Zbl 1217.81074) Full Text: DOI References: [1] Ablowitz, M. J.; Clarkson, P. A., Solitons, Nonlinear Evolution Equations and Inverse Scattering (1991), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 0762.35001 [2] Hirota, R., Phys. Rev. Lett., 27, 1192 (1971) [3] Wang, M. L., Phys. Lett. A, 199, 169 (1995) [4] Wang, M. L., Phys. Lett. A, 213, 279 (1996) [5] Yan, Z. Y.; Zhang, H. Q., Phys. Lett. A, 285, 355 (2001) [6] Wang, M. L.; Wang, Y. M., Phys. Lett. A, 287, 211 (2001) [7] Liu, S. K.; Fu, Z. T.; Liu, S. D.; Zhao, Q., Phys. Lett. A, 289, 69 (2001) [8] Yan, Z. Y., Chaos Solitons Fractals, 18, 299 (2003) [9] Parkes, E. J.; Duffy, B. R., Comput. Phys. Commun., 98, 288 (1996) [10] Li, Z. B.; Liu, Y. P., Comput. Phys. Commun., 148, 256 (2002) [11] Fan, E. G., Phys. Lett. A, 277, 212 (2000) [12] Yan, Z. Y., Phys. Lett. A, 292, 100 (2001) [13] Li, B.; Chen, Y.; Zhang, H. Q., Chaos Solitons Fractals, 15, 647 (2003) [14] Yomba, E., Chaos Solitons Fractals, 20, 1135 (2004) [15] Liu, C.; Liu, X., Phys. Lett. A, 348, 222 (2006) [16] Wang, M. L.; Zhou, Y. B., Phys. Lett. A, 318, 84 (2003) [17] Zhou, Y. B.; Wang, M. L.; Wang, Y. M., Phys. Lett. A, 308, 31 (2003) [18] Wang, M. L.; Li, X. Z., Chaos Solitons Fractals, 24, 629 (2005) [19] Li, X. Z.; Zhang, J. L.; Wang, Y. M., Acta Phys. Sinica, 53, 4045 (2004) [20] Yomba, E., Phys. Lett. A, 336, 463 (2005) [21] Yomba, E., Chin. J. Phys., 43, 789 (2005) [22] Yomba, E., Chaos Solitons Fractals, 26, 785 (2005) [23] Yomba, E., Chaos Solitons Fractals, 27, 187 (2006) [24] Sirendaoreji, Phys. Lett. A, 356, 124 (2006) · Zbl 1160.35527 [25] Sirendaoreji, Phys. Lett. A, 363, 440 (2007) · Zbl 1174.35515 [26] Zhang, S.; Xia, T. C., Phys. Lett. A, 363, 356 (2007) [27] Li, X.; Wang, M., Phys. Lett. A, 361, 115 (2007) [28] Zhang, J. L.; Wang, M. L.; Li, X. Z., Phys. Lett. A, 357, 188 (2006) [29] Wang, M.; Li, X.; Zhang, J., Phys. Lett. A, 363, 96 (2007) [30] Tian, L.; Yin, J., Chaos Solitons Fractals, 20, 289 (2004) [31] Yan, Z., Phys. Lett. A, 357, 196 (2006) [32] Camassa, R.; Holm, D. D., Phys. Rev. Lett., 71, 1661 (1993) [33] Camassa, R.; Holm, D. D.; Hyman, J. M., Adv. Appl. Mech., 31, 1 (1994) [34] Parker, A., Proc. R. Soc. London, Ser. A, 460, 2929 (2005) [35] Parker, A.; Matsumo, Y., J. Phys. Soc. Jpn., 75, 124001 (2007) [36] Tian, L.; Song, X., Chaos Solitons Fractals, 9, 627 (2004) [37] Day, H. H.; Huo, Y., Proc. R. Soc. London, Ser. A, 456, 331 (2000) [38] Liu, Z.; Chen, C., Chaos Solitons Fractals, 22, 627 (2004) [39] Degasperis, A.; Procesi, M., Asymptotic Integrability Symmetry and Perturbation Theory, vol. 23 (2002), World Scientific [40] Yomba, E., J. Math. Phys., 46, 123504 (2005) [42] Zheng, W., J. Phys. A, 27, L931 (1994) · Zbl 0839.35125 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.