zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mean square exponential stability of uncertain stochastic delayed neural networks. (English) Zbl 1217.92005
Summary: This letter concerns the mean square exponential stability of uncertain stochastic delayed neural networks. By applying Lyapunov functional method, new delay-dependent/independent mean square exponential stability criteria are derived in terms of linear matrix inequalities. Two examples are presented which show our result are less conservative than the existing stability criteria.

92B20General theory of neural networks (mathematical biology)
68T05Learning and adaptive systems
Full Text: DOI
[1] Marcus, C. M.; Westervelt, R. M.: Phys. rev. A. 39, 347 (1989)
[2] Cao, J.: Phys. lett. A. 270, 157 (2000)
[3] Cao, J.: Phys. lett. A. 267, 312 (2000)
[4] Xu, D.; Zhao, H.; Zhu, H.: Comput. math. Appl.. 42, 39 (2001)
[5] Ye, H.; Michel, A. N.: IEEE trans. Circuits syst.-I. 43, 532 (1996)
[6] Chen, W. -H.; Lu, X.; Liang, D. -Y.: Phys. lett. A. 358, 186 (2006)
[7] Chen, W. -H.; Lu, X.; Guan, Z. -H.; Zheng, W. X.: IEEE trans. Circuits syst.-II. 53, 837 (2006)
[8] Chen, W. -H.; Guan, Z. -H.; Lu, X.: Phys. lett. A. 326, 355 (2004)
[9] Chen, W. -H.; Lu, X.: Phys. lett. A. 351, 53 (2006)
[10] Chen, W. -H.; Zheng, W. X.: IEEE trans. Circuits syst.-I. 53, 644 (2006)
[11] Xu, S.; Lam, J.; Ho, D. W. C.; Zou, Y.: IEEE trans. Circuits syst.-II. 53, 230 (2006)
[12] He, Y.; Wu, M.; She, J. -H.: IEEE trans. Circuits syst.-II. 53, 553 (2006)
[13] He, Y.; Liu, G. P.; Rees, D.: IEEE trans. Neural. networks.. 18, 310 (2007)
[14] Haykin, S.: Neural networks. (1994) · Zbl 0828.68103
[15] Mao, X.: Stochastic differential equations and applications. (1997) · Zbl 0892.60057
[16] Blythe, S.; Mao, X.; Liao, X.: J. franklin inst.. 338, 481 (2001)
[17] Wan, L.; Sun, J.: Phys. lett. A. 343, 306 (2005)
[18] Zhu, W.; Hu, J.: Chaos solitons fractals. 29, 171 (2006)
[19] Wang, Z.; Shu, H.; Fang, J.; Liu, X.: Nonlinear anal.: real world appl.. 7, 1119 (2006)
[20] Zhang, J.; Shi, P.; Qiu, J.: Nonlinear anal.: real world appl.. 8, 1349 (2007)
[21] Huang, H.; Feng, G.: Physica A. 381, 93 (2007)
[22] He, Y.; Wu, M.; She, J. H.; Liu, G. P.: Syst. control. Lett.. 51, 57 (2004)
[23] He, Y.; Wang, Q. G.; Xie, L. H.; Lin, C.: IEEE trans. Automat. control.. 52, 293 (2007)
[24] Boyd, S.; Ghaoui, L. Ei.; Feron, E.; Balakrishnan, V.: Matrix inequalities in systems and control theory. (1994) · Zbl 0816.93004
[25] Wang, Y.; Xie, L.; De Souza, C. E.: Syst. control. Lett.. 19, 139 (1992)