zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization of nonlinear networked systems with sensor random packet dropout and time-varying delay. (English) Zbl 1217.93178
Summary: A nonlinear stochastic system model is proposed to describe the networked control systems (NCSs) with both random packet dropout and network-induced time-varying delay. Based on this more general nonlinear NCSs model, by choosing appropriate Lyapunov functional and employing new discrete Jensen type inequality, a sufficient condition is derived to establish the quantitative relation of maximum allowable delay upper bound, packet dropout rate and the nonlinear level to the exponential stability of the nonlinear NCSs. Design procedures for output feedback controller are also presented in terms of utilizing cone complementarities linearization algorithm or solving corresponding linear matrix inequalities (LMIs). Illustrative examples are provided to demonstrate the effectiveness of the proposed method.

93E15Stochastic stability
93C55Discrete-time control systems
93D15Stabilization of systems by feedback
Full Text: DOI
[1] Hespanha, J.; Naghshtabrizi, P.; Xu, Y.: A survey of recent results in networked control systems, IEEE proc. 95, 138-162 (2007)
[2] Nilsson, J.; Bernhardsson, B.; Wittenmark, B.: Stochastic analysis and control of real-time systems with random time delays, Automatica 34, 57-64 (1998) · Zbl 0908.93073 · doi:10.1016/S0005-1098(97)00170-2
[3] Kim, D.; Lee, Y.; Kwon, W.; Park, H.: Maximum allowable delay bounds of networked control systems, Control eng. Pract. 11, 1301-1313 (2003)
[4] Zheng, Y.; Fang, H. J.; Wang, H. O.: Takagi-sugeno fuzzy-model-based fault detection for networked control systems with Markov delays, IEEE trans. Syst. man cybern. Part B 36, 924-929 (2006)
[5] Xiong, J. L.; Lam, J.: Stabilization of networked control systems with a logic ZOH, IEEE trans. Automat. control 54, 358-363 (2009)
[6] Yang, F. W.; Wang, Z. D.; Hung, Y. S.; Gani, M.: H$\infty $ control for networked systems with random communication delays, IEEE trans. Automat. control 51, 511-518 (2006)
[7] Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust H$\infty $ control or networked systems with random packet losses, IEEE trans. Syst. man cybern. Part B 37, 916-924 (2007)
[8] Sahebsara, M.; Chen, T. W.; Lshah, S.: Optimal H$\infty $ filtering in networked control systems with multiple packet dropouts, Syst. control lett. 57, 696-702 (2008) · Zbl 1153.93034 · doi:10.1016/j.sysconle.2008.01.011
[9] Fang, X.; Wang, J.: Stochastic observer-based guaranteed cost control for networked control systems with packet dropouts, IET control theory appl. 2, 980-989 (2008)
[10] Yue, D.; Han, Q. L.; Lam, J.: Network-based robust H$\infty $ control of systems with uncertainty, Automatica 41, 999-1007 (2005) · Zbl 1091.93007 · doi:10.1016/j.automatica.2004.12.011
[11] Yu, M.; Wang, L.; Chu, T.; Xie, G.: Stabilization of networked control systems with data packet dropout and network delays via switching system approach, Proc. CDC, 3539-3544 (2004)
[12] Zhang, W. A.; Yu, L.: Modelling and control of networked control systems with both network-induced delay and packet-dropout, Automatica 44, 3206-3210 (2008) · Zbl 1153.93321 · doi:10.1016/j.automatica.2008.09.001
[13] Han, Q. L.: Absolute stability for time delay systems with sector-bound nonlinearity, Automatica 41, 2171-2176 (2005) · Zbl 1100.93519 · doi:10.1016/j.automatica.2005.08.005
[14] Sun, J.; Liu, G. P.: State feedback and output feedback control of a class of nonlinear systems with delayed measurements, Nonlinear anal. 67, 1623-1636 (2007) · Zbl 1123.34064 · doi:10.1016/j.na.2006.08.007
[15] Kwon, O. M.; Park, J. H.; Lee, S. M.: On robust stability criteria for dynamic systems with time-varying delays and nonlinear perturbations, Appl. math. Comput. 203, 937-942 (2008) · Zbl 1168.34354 · doi:10.1016/j.amc.2008.05.097
[16] Qiu, F.; Cui, B. T.; Ji, Y.: Further results on robust stability of neutral system with mixed time-varying delays and nonlinear perturbations, Nonlinear anal.: real world appl. 11, 895-906 (2010) · Zbl 1187.37124 · doi:10.1016/j.nonrwa.2009.01.032
[17] Peng, C.; Tian, Y. C.; Tade, M. O.: State feedback controller design of networked control systems with interval time-varying delay and nonlinearity, Int. J. Robust nonlinear control 18, 1285-1301 (2008) · Zbl 1284.93111
[18] Park, P.: A delay-dependent stability criterion for systems with uncertain time-invariant delays, IEEE trans. Automat. control 44, 876-877 (1999) · Zbl 0957.34069 · doi:10.1109/9.754838
[19] Moon, Y. S.; Park, P.; Kwon, W. H.; Lee, Y. S.: Delay-dependent robust stabilization of uncertain state-delayed systems, Int. J. Control 74, 447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116
[20] He, Y.; Liu, G. P.; Rees, D.; Wu, M.: H$\infty $ filtering for discrete-time systems with time-varying delay, Signal process. 89, 275-282 (2009) · Zbl 1151.94369 · doi:10.1016/j.sigpro.2008.08.008
[21] Zhang, X. M.; Han, Q. L.: Delay-dependent robust H$\infty $ filtering for uncertain discrete-time systems with time-varying delay based on a finite sum inequality, IEEE trans. Circuits syst. II 58, 1466-1470 (2006)