[1] |
Rudin, L.; Osher, S.; Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D 60, No. 1-4, 259-268 (1992) · Zbl 0780.49028
· doi:10.1016/0167-2789(92)90242-F |

[2] |
Gilles, J.; Meyer, Y.: Properties of BV-G structures+textures decomposition models. Application to road detection in satellite images, IEEE trans. Image process. 9, No. 11, 2793-2800 (2010) |

[3] |
Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations: the 15th Dean jacqueline B, Lewis memorial lectures (2001) · Zbl 0987.35003 |

[4] |
Vese, L.; Osher, S.: Image denoising and decomposition with total variation minimization and oscillatory functions, J. math. Imaging vision 20, 7-18 (2004) |

[5] |
Osher, S.; Solé, A.; Vese, L.: Image decomposition and restoration using total variation minimization and H - 1 norm, Multi. model. Simul. 1, No. 3, 349-370 (2003) · Zbl 1051.49026
· doi:10.1137/S1540345902416247 |

[6] |
L. Linh, L. Vese, Image restoration and decomposition via bounded total variation and negative Hilbert-Sobolev space, UCLA CAM Report 05-33, 2005. |

[7] |
Aubert, G.; Aujol, J. F.: Modeling very oscillating signals. Application to image processing, Appl. math. Opt. 51, No. 2, 163-182 (2005) · Zbl 1162.49306
· doi:10.1007/s00245-004-0812-z |

[8] |
Chan, T. F.; Marquina, A.; Mulet, P.: High-order total variation based image restoration, SIAM J. Sci. comput. 22, No. 2, 503-516 (2000) · Zbl 0968.68175
· doi:10.1137/S1064827598344169 |

[9] |
You, Y. L.; Kaveh, M.: Fourth-order partial differential equations for noise removal, IEEE trans. Image process. 9, No. 10, 1723-1730 (2000) · Zbl 0962.94011
· doi:10.1109/83.869184 |

[10] |
Lysaker, M.; Lundervold, A.; Tai, X. C.: Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE trans. Image process. 12, No. 12, 1579-1590 (2003) · Zbl 1286.94020 |

[11] |
Lysaker, M.; Tai, X. C.: Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput.vis. 66, No. 1, 5-18 (2006) · Zbl 1286.94021 |

[12] |
Bai, J.; Feng, X. C.: Fractional-order anisotropic diffusion for image denoising, IEEE trans. Image process. 16, No. 10, 2492-2502 (2007) |

[13] |
Pu YF. Fractional calculus approach to texture of digital image, in: Proceedings of 8th International Conference on Signal Processing, IEEE, Beijing, 2006, pp. 1002 -- 1006. |

[14] |
Pu, Y. F.: Application of fractional differential approach to digital image processing, J. sichuan univ. (Eng. Sci. ed.) 39, No. 3, 124-132 (2007) |

[15] |
Pu, Y. F.: Fractional differential analysis for texture of digital image, J. algorithms comput. Technol. 1, No. 3, 357-380 (2007) |

[16] |
Pu, Y. F.; Wang, W.; Zhou, J.; Wang, Y.; Jia, H.: Fractional differential approach to detecting textural features of digital image and its fractional differential filter implementation, Sci. China ser. F: inform. Sci. 51, No. 9, 1319-1339 (2008) · Zbl 1147.68814
· doi:10.1007/s11432-008-0098-x |

[17] |
Podlubny, I.: Fractional differential equations [M], (1999) · Zbl 0924.34008 |

[18] |
Chambolle, A.: An algorithm for total variation minimization and applications, Jmiv 20, 89-97 (2004) |