zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Closed-form frequency estimator based on narrow-band approximation under noisy environment. (English) Zbl 1217.94070
Summary: A new method for single sinusoidal frequency estimation in closed-form formula is proposed. Since sinusoidal signals are narrow-banded and white noise distribution is statistically equal in the whole spectrum, a narrow-band signal extracted from the Fourier transform of the original signal can be used to approximate the noise-corrupted sinusoidal signal. A concise closed-form formula is then deduced to estimate the frequency based on the narrow-band signal. Performance analysis and simulation results are presented, showing that the new algorithm has close performance to the Cramer-Rao bound, especially under low SNRs. It is also demonstrated that the method can be easily generalized to multi-sinusoidal signals.
94A12Signal theory (characterization, reconstruction, filtering, etc.)
Full Text: DOI
[1] Rife, D. C.; Boorstyn, R. R.: Single tone parameter estimation from discrete-time observations, IEEE trans. Inform. theory 20, No. 5, 591-598 (1974) · Zbl 0302.62045 · doi:10.1109/TIT.1974.1055282
[2] Kay, S. M.; Jr., S. L. Marple: Spectrum analysis--a modern perspective, Proc. IEEE 69, No. 11, 1380-1419 (1981)
[3] Tretter, S.: Estimating the frequency of a noisy sinusoid by linear regression, IEEE trans. Inform. theory 31, No. November, 832-835 (1985)
[4] Kay, S. M.: A fast and accurate single frequency estimator, IEEE trans. Acoust. speech signal process. 37, No. 12, 1987-1990 (1989)
[5] Clarkson, V.; Kootsookos, P. J.; Quinn, B. G.: Analysis of the variance threshold of kay’s weighted linear predictor frequency estimator, IEEE trans. Signal process. 42, No. 9, 2370-2379 (1994)
[6] Leung, S. H.; Xiong, Y.; Lau, W. H.: Modified kay’s method with improved frequency estimation, Electron. lett. 36, 918-920 (2000)
[7] Lank, G.; Reed, I.; Pollon, G.: A semicoherent detection and Doppler estimation statistic, IEEE trans. Aerosp. electron. Syst. 9, 151-165 (1973)
[8] Fitz, M.: Further results in the fast estimation of a single frequency, IEEE trans. Commun. 42, No. 2--4, 862-864 (1994)
[9] Luise, M.; Reggiannini, R.: Carrier frequency recovery in all-digital modems for burst-mode transmissions, IEEE trans. Commun. 43, No. 3, 1169-1178 (1995)
[10] Brown, T.; Wang, M.: An iterative algorithm for single-frequency estimation, IEEE trans. Signal process. 50, No. 11, 2671-2682 (2002)
[11] Roy, R.; Paulraj, A.; Kailath, T.: ESPRIT: a subspace rotation approach to estimation of parameters of cisoid in noise, IEEE trans. Acoust. speech signal process. 34, No. 5, 1340-1342 (1986)
[12] Mahata, K.: Subspace Fitting approaches for frequency estimation using real-valued data, IEEE trans. Signal process. 53, No. 8, 3099-3110 (2005)
[13] Yuen, N.; Friedlander, B.: Asymptotic performance analysis of esprit, higher order ESPRIT, and virtual ESPRIT algorithms, IEEE trans. Signal process. 44, No. 10, 2537-2543 (1996)
[14] Zakharov, Y. V.; Tozer, T. C.: Frequency estimator with dichotomous search of penodogram peak, Electron. lett. 35, No. 19, 1608-1609 (1999)
[15] Quinn, B. G.: Estimating frequency by interpolation using Fourier coefficients, IEEE trans. Signal process. 42, No. 5, 1264-1268 (1994)
[16] Quinn, B. G.: Estimation of frequency, amplitude, and phase from the DFT of a time series, IEEE trans. Signal process. 45, No. 3, 814-817 (1997)
[17] Quinn, B. G.; Hannan, E. J.: The estimation and tracking of frequency, (2001) · Zbl 0969.62060
[18] Aboutanios, E.; Mulgrew, B.: Iterative frequency estimation by interpolation on Fourier coefficients, IEEE trans. Signal process. 53, No. 4, 1237-1242 (2005)
[19] Catherine, M. D.; Marchand, S.: High precision Fourier analysis of sounds using signal derivatives, J. audio eng. Soc. 48, No. 7/8, 654-667 (2000)
[20] C. Yang, G. Wei, F.J. Chen, An estimation-range extended autocorrelation-based frequency estimator, J. Adv. Signal Process. (2009), Article ID 961938. doi:10.1155/2009/961938. · Zbl 1192.94060 · doi:10.1155/2009/961938