×

Weak dimension and right distributivity of skew generalized power series rings. (English) Zbl 1218.16037

Let \(S\) be a multiplicative monoid (i.e. a semigroup with identity) and let \(\leq\) be an order relation on the set \(S\). The monoid \(S\) is said to be strictly ordered if for all \(s,t,v\in S\) the inequality \(s<t\) implies \(sv<tv\) and \(vs<vt\). An ordered monoid is positively ordered if \(s\geq 1\) for every \(s\in S\).
Let \(R\) be an associative ring with identity and let \(\omega\colon S\to\text{End}(R)\) be a monoid homomorphism. Then the authors define a skew generalized power series ring \(R[[S,\omega]]\) as the set of all maps \(f\colon S\to R\) whose support \(\text{Supp}(f)=\{s\in S\mid f(s)\neq 0\}\) is Artinian and narrow (i.e. it does not contain infinite strictly decreasing chains of elements and it does not contain infinite subsets of pairwise order-incomparable elements). Hence, the skew series ring \(R[[S,\sigma]]\) can be considered as a special case of a skew generalized power series ring \(R[[S,\omega]]\).
The aim of this paper is to study relationships between the weak dimension of a skew generalized power rings \(R[[S,\omega]]\) with positively strictly ordered monoid \(S\) and the properties of the lattice of right ideals of \(R[[S,\omega]]\). When \(S\) is a positively strictly ordered monoid, then the authors give sufficient and necessary conditions under which \(R[[S,\omega]]\) has weak dimension less than or equal to one. In particular, for such an \(S\) they show that \(R[[S,\omega]]\) is distributive and \(\omega(s)\) is injective for every \(s\in S\). These results generalize the main results of R. Mazurek and M. Ziembowski [Publ. Mat., Barc. 53, No. 2, 257-271 (2009; Zbl 1176.16034)].

MSC:

16W60 Valuations, completions, formal power series and related constructions (associative rings and algebras)
16D25 Ideals in associative algebras
16E10 Homological dimension in associative algebras
16D40 Free, projective, and flat modules and ideals in associative algebras
16D50 Injective modules, self-injective associative rings
16E50 von Neumann regular rings and generalizations (associative algebraic aspects)

Citations:

Zbl 1176.16034
Full Text: DOI

References:

[1] C. Bessenrodt, H. H. Brungs and G. Törner, Right chain rings, Part 1, Schriftenreihe des Fachbereichs Math., 181 , Duisburg Univ., 1990.
[2] J. Brewer, E. Rutter and J. Watkins, Coherence and weak global dimension of \(R[[x]]\) when \(R\) is von Neumann regular, J. Algebra, 46 (1977), 278-289. · Zbl 0393.13004 · doi:10.1016/0021-8693(77)90405-7
[3] M. Ferrero, R. Mazurek and A. Sant’Ana, On right chain semigroups, J. Algebra, 292 (2005), 574-584. · Zbl 1098.20045 · doi:10.1016/j.jalgebra.2005.07.019
[4] D. Herbera, Bezout and semihereditary power series rings, J. Algebra, 270 (2003), 150-168. · Zbl 1042.16034 · doi:10.1016/S0021-8693(03)00418-6
[5] C. U. Jensen, A remark on arithmetical rings, Proc. Amer. Math. Soc., 15 (1964), 951-954. · Zbl 0135.07902 · doi:10.2307/2034915
[6] O. A. S. Karamzadeh and A. A. Koochakpoor, On \(\aleph_0\)-self-injectivity of strongly regular rings, Comm. Algebra, 27 (1999), 1501-1513. · Zbl 0920.16001 · doi:10.1080/00927879908826510
[7] T. Y. Lam, A First Course in Noncommutative Rings, Springer-Verlag, New York, 1991. · Zbl 0728.16001
[8] G. Marks, Duo rings and Ore extensions, J. Algebra, 280 (2004), 463-471. · Zbl 1072.16023 · doi:10.1016/j.jalgebra.2004.04.018
[9] G. Marks, R. Mazurek and M. Ziembowski, A new class of unique product monoids with applications to ring theory, Semigroup Forum, 78 (2009), 210-225. · Zbl 1177.16030 · doi:10.1007/s00233-008-9063-7
[10] R. Mazurek and M. Ziembowski, On Bezout and distributive generalized power series rings, J. Algebra, 306 (2006), 387-401. · Zbl 1107.16043 · doi:10.1016/j.jalgebra.2006.07.030
[11] R. Mazurek and M. Ziembowski, Uniserial rings of skew generalized power series, J. Algebra, 318 (2007), 737-764. · Zbl 1152.16035 · doi:10.1016/j.jalgebra.2007.08.024
[12] R. Mazurek and M. Ziembowski, On von Neumann regular rings of skew generalized power series, Comm. Algebra, 36 (2008), 1855-1868. · Zbl 1159.16032 · doi:10.1080/00927870801941150
[13] R. Mazurek and M. Ziembowski, Duo, Bézout and distributive rings of skew power series, Publ. Mat., 53 (2009), 257-271. · Zbl 1176.16034 · doi:10.5565/PUBLMAT_53209_01
[14] P. Ribenboim, Semisimple rings and von Neumann regular rings of generalized power series, J. Algebra, 198 (1997), 327-338. · Zbl 0890.16004 · doi:10.1006/jabr.1997.7063
[15] W. Stephenson, Modules whose lattice of submodules is distributive, Proc. London Math. Soc., 28 (1974), 291-310. · Zbl 0294.16003 · doi:10.1112/plms/s3-28.2.291
[16] A. Tuganbaev, Distributive modules and related topics, Algebra, Logic and Applications, 12 , Gordon and Breach Science Publishers, Amsterdam, 1999. · Zbl 0962.16003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.