zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Deterministic and stochastic analysis of a delayed allelopathic phytoplankton model within fluctuating environment. (English) Zbl 1218.34098
Summary: We consider a two-dimensional model for two competitive phytoplankton species where one species is toxic phytoplankton and other is a non-toxic species. The logistic growth of both the species follows the Hutchinson type growth law. First, we briefly discuss basic dynamical properties of non-delayed and delayed model systems within deterministic environment. Next, we formulate the stochastic delay differential equation model system to study the effect of environmental driving forces on the dynamical behavior. We calculate the population fluctuation intensity (variance) for both species by the Fourier transform method. Numerical simulations are carried out to substantiate the analytical findings. Significant results of our analytical findings and their interpretations from ecological point of view are provided in the concluding section.

MSC:
34K60Qualitative investigation and simulation of models
34K18Bifurcation theory of functional differential equations
92D25Population dynamics (general)
34K20Stability theory of functional-differential equations
34K50Stochastic functional-differential equations
WorldCat.org
Full Text: DOI
References:
[1] Duinker, J.; Wefer, G.: Das CO2 und die rolle des ozeans, Naturwissenschahten 81, 237-242 (1994)
[2] Anderson, D. M.: Toxic algae blooms and red tides: a global perspective, Red tides: biology, environmental science and toxicology, 11-21 (1989)
[3] Smayda, T.: Novel and nuisance phytoplankton blooms in the sea: evidance for a global epidemic, Toxic marine phytoplankton, 29-40 (1990)
[4] Hallegraeff, G. M.: A review of harmful algae blooms and the apparent global increase, Phycologia 32, 79-99 (1993)
[5] Chattopadhyay, J.; Sarkar, R. R.; Mondal, S.: Toxin-producing phytoplankton May act as a biological control for planktonic blooms-field study and mathematical modeling, J. theor. Biol. 215, 333-344 (2002)
[6] Sarkar, R. R.; Chattopadhyay, J.: The role of environmental stochasticity in a toxic phytoplankton-non-toxic phytoplankton-zooplankton system, Environmetrics 14, 775-792 (2003)
[7] Rice, E.: Allelopathy, (1984)
[8] Solé, J.; García-Ladona, E.; Ruardij, P.; Estrada, M.: Modelling allelopathy among marine algae, Ecol. model. 183, 373-384 (2005)
[9] Maynard-Smith, J.: Models in ecology, (1974) · Zbl 0312.92001
[10] Chattopadhyay, J.: Effects of toxic substances on a two-species competitive system, Ecol. model. 84, 287-289 (1996)
[11] Bandyopadhyay, M.: Dynamical analysis of a allelopathic phytoplankton model, J. biol. Sys. 14, 205-218 (2006) · Zbl 1105.92035 · doi:10.1142/S021833900600174X
[12] May, R. M.: Stability and complexity in model ecosystems, (2001) · Zbl 1044.92047
[13] Nisbet, R. M.; Gurney, W. S. C.: Modelling fluctuating populations, (1982) · Zbl 0593.92013
[14] Tapaswi, P. K.; Mukhopadhyay, A.: Effects of environmental fluctuation on plankton allelopathy, J. math. Biol. 39, 39-58 (1999) · Zbl 0929.92036 · doi:10.1007/s002850050162
[15] Carletti, M.: Numerical simulation of a Campbell-like stochastic delay model for bacteriophage infection, Math. med. Biol. 23, 297-310 (2006) · Zbl 1117.92032 · doi:10.1093/imammb/dql017
[16] Saha, T.; Bandyopadhyay, M.: Dynamical analysis of a delayed ratio-dependent prey predator model within fluctuating environment, Appl. math. Comput. (2007) · Zbl 1153.34051
[17] Kloede, P. E.; Platen, E.: Numerical ssolution of stochastic differential equations, (1999)
[18] Kolmanovskii, V.; Myshkis, A.: Introduction to the theory and applications of functional differential equations, (1999) · Zbl 0917.34001
[19] Mao, X.: Stochastic differential equations and their applications, (1997) · Zbl 0892.60057
[20] Mohammed, S. E. A.: Stochastic functional differential equations, (1984) · Zbl 0584.60066
[21] Baker, C. T. H.; Buckwar, E.: Numerical analysis of explicit one-step methods for stochastic delay differential equations, LMS J. Comput. math. 3, 315-335 (2000) · Zbl 0974.65008 · doi:10.1112/S1461157000000322 · http://www.lms.ac.uk/jcm/3/lms2000-002/