×

zbMATH — the first resource for mathematics

Linear systems of fractional nabla difference equations. (English) Zbl 1218.39003
The authors consider a system of linear fractional nabla difference equations with constant coefficients of the form
\[ \nabla_0^\nu y(t)=Ay(t)+f(t),\quad t=1,2,\dots, \]
where \(A\) denotes an \(n\times n\) matrix with constant entries, \(0<\nu<1\) and \(\nabla_0^\nu\) is the Riemann-Liouville fractional difference operator. They construct the fundamental matrix for the homogeneous system and the causal Green’s function for the nonhomogeneous system. Applications to asymptotic behavior are given.

MSC:
39A06 Linear difference equations
39A12 Discrete version of topics in analysis
26A33 Fractional derivatives and integrals
34A08 Fractional ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] M. Abramowitz and I. Stegun, Handbook of mathematical functions, with formulas, graphs and mathematical tables , Sixth printing, with corrections, in National Bureau of Standards Applied Mathematics Series 55 National Bureau of Standards, Washington, D.C., 1967. · Zbl 0543.33001
[2] R.P. Agarwal, A propos d’une note de M. Pierre Humbert , C.R. Acad. Sci. 236 (1953), 2031-2032. · Zbl 0051.30801
[3] G. Anastassiou, Nabla discrete fractional calculus and nabla inequalities , Math. Comput. Modelling 51 (2010), 562-571. · Zbl 1190.26001
[4] G.E. Andrews, R. Askey and R. Roy, Special functions , in Encyclopedia of mathematics and its applications 71 , Cambridge University Press, Cambridge, 1999.
[5] F.M. AtP.W. Eloe, Discrete fractional calculus with the nabla operator , Electron. J. Qual. Theory Differ. Equat. 2009 Special Edition I, No. 3, 12 pages (electronic). · Zbl 1189.39004
[6] —, A transform method in discrete fractional calculus , Inter. J. Difference Equations 2 (2007), 165-176.
[7] —, Fractional \(q\)-calculus on a time scale , J. Nonlinear Math. Phys. 14 (2007), 333-344.
[8] F.M. AtP.W. Eloe, Initial value problems in discrete fractional calculus , Proc. Amer. Math. Soc. 137 (2009), 981-989. · Zbl 1166.39005
[9] F.M. AtS. Şengül, Modeling with fractional difference equations , J. Math. Anal. Appl. 369 (2010), 1-9. · Zbl 1204.39004
[10] B. Bonilla, M. Rivero and J.J. Trujillo, On systems of linear fractional differential equations with constant coefficients , Appl. Math. Comput. 187 (2007), 68-78. · Zbl 1121.34006
[11] H.J. Haubold, A.M. Mathai and R.K. Saxena, Mittag-Leffler functions and their applications , arxiv.org/abs /09090230. · Zbl 1218.33021
[12] R. Magin, Fractional calculus in bioengineering , Begell House Publishers, Redding, CT, 2004.
[13] G.M. Mittag-Leffler, Sur la nouvelle fonction \(E_\alpha(x)\) , C.R. Acad. Sci. Paris 137 (1903), 554-558. · JFM 34.0435.01
[14] A. Nagai, Discrete Mittag-Leffler function and its applications , Publ. Res. Inst. Math. Sci. Kyoto Univ. 1302 (2003), 1-20.
[15] I. Podlubny, Fractional differential equations , Academic Press, New York, 1999. · Zbl 0924.34008
[16] G. Samko, A.A. Kilbas and O.I. Marichev, Fractional integrals and derivatives: Theory and applications , Gordon and Breach, Yverdon, 1993. · Zbl 0818.26003
[17] H.M. Srivastava and Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel , Appl. Math. Comput. 211 (2009), 198-210. · Zbl 1432.30022
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.