zbMATH — the first resource for mathematics

Strong convergence theorems of \(k\)-strict pseudo-contractions in Hilbert spaces. (English) Zbl 1218.47115
Summary: Let \(K\) be a nonempty closed convex subset of a real Hilbert space \(H\) such that \(K\pm K\subset K\), let \(T: K\rightarrow H\) be a \(k\)-strict pseudo-contraction for some \(0\leq k<1\) such that \(F(T)=\{x\in K\: x=Tx\}\neq \emptyset \). Consider the iterative algorithm given by
\[ \forall x_1\in K,\quad x_{n+1}=\alpha _n\gamma f(x_n)+\beta _nx_n+((1-\beta _n)I-\alpha _n A)P_KSx_n,\quad n\geq 1, \]
where \(S: K\rightarrow H\) is defined by \(Sx=kx+(1-k)Tx\), \(P_K\) is the metric projection of \(H\) onto \(K\), \(A\) is a strongly positive linear bounded selfadjoint operator, and \(f\) is a contraction. It is proved that the sequence \(\{x_n\}\) generated by the above iterative algorithm converges strongly to a fixed point of \(T\), which solves a variational inequality related to the linear operator \(A\). Our results improve and extend the results announced by many others.
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.
47H10 Fixed-point theorems
Full Text: DOI EuDML
[1] G. L. Acedo and H. K. Xu: Iterative methods for strict pseudo-contractions in Hilbert spaces. Nonlinear Anal. 67 (2007), 2258–2271. · Zbl 1133.47050
[2] F. E. Browder: Fixed point theorems for noncompact mappings in Hilbert spaces. Proc. Natl. Acad. Sci. USA 53 (1965), 1272–1276. · Zbl 0125.35801
[3] F. E. Browder: Convergence of approximants to fixed points of nonexpansive nonlinear mappings in Banach spaces. Arch. Ration. Mech. Anal. 24 (1967), 82–90. · Zbl 0148.13601
[4] F. E. Browder and W. V. Petryshyn: Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20 (1967), 197–228. · Zbl 0153.45701
[5] B. Halpern: Fixed points of nonexpansive maps. Bull. Amer. Math. Soc. 73 (1967), 957–961. · Zbl 0177.19101
[6] P. L. Lions: Approximation de points fixes de contractions. C.R. Acad. Sci. Paris Ser. A-B 284 (1977), A1357–A1359. · Zbl 0349.47046
[7] G. Marino and H. K. Xu: Weak and strong convergence theorems for k-strict pseudocontractions in Hilbert spaces. J. Math. Anal. Appl. 329 (2007), 336–349. · Zbl 1116.47053
[8] G. Marino and H. K. Xu: A general iterative method for nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl. 318 (2006), 43–52. · Zbl 1095.47038
[9] A. Moudafi: Viscosity approximation methods for fixed points problems. J. Math. Anal. Appl. 241 (2000), 46–55. · Zbl 0957.47039
[10] T. Suzuki: Strong convergence theorems for infinite families of nonexpansive mappings in general Banach spaces. Fixed Point Theory Appl. (2005), 103–123. · Zbl 1123.47308
[11] R. Wittmann: Approximation of fixed points of nonexpansive mappings. Arch. Math. 58 (1992), 486–491. · Zbl 0797.47036
[12] H. K. Xu: An iterative approach to quadratic optimization. J. Optim. Theory Appl. 116 (2003), 659–678. · Zbl 1043.90063
[13] H. K. Xu: Iterative algorithms for nonlinear operators. J. London Math. Soc. 66 (2002), 240–256. · Zbl 1013.47032
[14] H. K. Xu: Another control condition in an iterative method for nonexpansive mappings. Bull. Austral. Math. Soc. 65 (2002), 109–113. · Zbl 1030.47036
[15] H. K. Xu: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298 (2004), 279–291. · Zbl 1061.47060
[16] H. Zhou: Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert space. Nonlinear Analysis 69 (2008), 456–462. · Zbl 1220.47139
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.