×

Relative fixed point theory. (English) Zbl 1218.55001

Relative fixed point theory deals with the fixed point sets of relative maps, i.e. maps of the form \(f:(X, A)\to (X,A)\). The crucial invariant is the relative Nielsen number \(N(f; X, A)\) defined by H. Schirmer in [Pac. J. Math. 122, 459–473 (1986; Zbl 0553.55001)], which is a lower bound for the number of fixed points for all maps in the relative homotopy class of \(f\). The author of this paper defines some relative Lefschetz numbers and relative Reidemeister traces by using traces in bicategories with shadows.
The author also illustrates how to compare her new invariants with existing relative Nielsen numbers. Moreover, a relative Lefschetz fixed point theorem and its inverse are given: If \((X,A)\) is a pair of compact manifolds such that \(\dim X\geq 3\) and \(\dim X - \dim A \geq 2\), then a relative map \(f: (X,A)\to (X,A)\) is relatively homotopic to a fixed point free map if and only if the relative Reidemeister trace of \(f\) is zero. The proof of this main theorem follows that in [J. R. Klein and E. B. Williams, Geom. Topol. 11, 939–977 (2007; Zbl 1132.57024)]. More detailed material about bicategories with shadows can be found in the author’s book [Fixed point theory and trace for bicategories. Astérisque 333. Paris: Société Mathématique de France (SMF) (2010; Zbl 1207.18001)].

MSC:

55M20 Fixed points and coincidences in algebraic topology
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
55P25 Spanier-Whitehead duality
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] C Bowszyc, Fixed point theorems for the pairs of spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 16 (1968) 845 · Zbl 0177.51702
[2] R F Brown, The Lefschetz fixed point theorem, Scott, Foresman and Co. (1971) · Zbl 0216.19601
[3] M Crabb, I James, Fibrewise homotopy theory, Springer Monogr. in Math., Springer (1998) · Zbl 0905.55001
[4] T tom Dieck, Transformation groups, de Gruyter Studies in Math. 8, de Gruyter (1987) · Zbl 0611.57002
[5] A Dold, The fixed point transfer of fibre-preserving maps, Math. Z. 148 (1976) 215 · Zbl 0329.55007
[6] A Dold, Lectures on algebraic topology, Classics in Math., Springer (1995) · Zbl 0872.55001
[7] A Dold, D Puppe, Duality, trace, and transfer (editors K Borsuk, A Kirkor), PWN (1980) 81 · Zbl 0473.55008
[8] E Fadell, S Husseini, Fixed point theory for non-simply-connected manifolds, Topology 20 (1981) 53 · Zbl 0469.55004
[9] S Husseini, Generalized Lefschetz numbers, Trans. Amer. Math. Soc. 272 (1982) 247 · Zbl 0507.55001
[10] I M James, Fibrewise complexes (editors C Broto, C Casacuberta, G Mislin), Progr. Math. 136, Birkhäuser (1996) 193 · Zbl 0869.55015
[11] J Jezierski, A modification of the relative Nielsen number of H Schirmer, Topology Appl. 62 (1995) 45 · Zbl 0841.55002
[12] B J Jiang, Lectures on Nielsen fixed point theory, Contemporary Math. 14, Amer. Math. Soc. (1983) · Zbl 0512.55003
[13] B J Jiang, X Zhao, H Zheng, On fixed points of stratified maps, J. Fixed Point Theory Appl. 2 (2007) 225 · Zbl 1209.55002
[14] J R Klein, B Williams, Homotopical intersection theory. I, Geom. Topol. 11 (2007) 939 · Zbl 1132.57024
[15] J R Klein, B Williams, Homotopical intersection theory. II. Equivariance, Math. Z. 264 (2010) 849 · Zbl 1185.57031
[16] L G Lewis Jr., J P May, M Steinberger, J E McClure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer (1986) · Zbl 0611.55001
[17] W Lück, Transformation groups and algebraic \(K\)-theory, Lecture Notes in Math. 1408, Springer (1989) · Zbl 0679.57022
[18] J P May, J Sigurdsson, Parametrized homotopy theory, Math. Surveys and Monogr. 132, Amer. Math. Soc. (2006) · Zbl 1119.55001
[19] B Norton-Odenthal, P Wong, A relative generalized Lefschetz number, Topology Appl. 56 (1994) 141 · Zbl 0807.55004
[20] K Ponto, Equivariant fixed point theory · Zbl 1222.55001
[21] K Ponto, Fixed point theory and trace for bicategories, Astérisque (2010) · Zbl 1207.18001
[22] K Ponto, M Shulman, Shadows and traces in bicategories · Zbl 1298.18006
[23] K Reidemeister, Automorphismen von Homotopiekettenringen, Math. Ann. 112 (1936) 586 · Zbl 0013.36903
[24] H Schirmer, A relative Nielsen number, Pacific J. Math. 122 (1986) 459 · Zbl 0553.55001
[25] H Schirmer, On the location of fixed points on pairs of spaces, Topology Appl. 30 (1988) 253 · Zbl 0664.55003
[26] J Stallings, Centerless groups-an algebraic formulation of Gottlieb’s theorem, Topology 4 (1965) 129 · Zbl 0201.36001
[27] A Strøm, Note on cofibrations, Math. Scand. 19 (1966) 11 · Zbl 0145.43604
[28] F Wecken, Fixpunktklassen. II. Homotopieinvarianten der Fixpunkttheorie, Math. Ann. 118 (1941) 216 · Zbl 0026.27103
[29] X Zhao, Minimal fixed point sets of relative maps, Fund. Math. 162 (1999) 163 · Zbl 0948.55003
[30] X Zhao, On minimal fixed point numbers of relative maps, Topology Appl. 112 (2001) 41 · Zbl 0967.55002
[31] X Zhao, Relative Nielsen theory (editors R F Brown, M Furi, L Górniewicz, B J Jiang), Springer (2005) 659 · Zbl 1080.55006
[32] X Zhao, A relative Reidemeister trace, JP J. Fixed Point Theory Appl. 1 (2006) 65 · Zbl 1140.55002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.