×

The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion. (English) Zbl 1218.60053

Summary: We investigate the existence, uniqueness and exponential asymptotic behavior of mild solutions to stochastic delay evolution equations perturbed by a fractional Brownian motion \(B^H_Q(t)\),
\[ dX(t)=(AX(t)+f(t,X_t))\,dt+g(t)\,dB^H_Q(t), \]
with Hurst parameter \(H\in (1/2,1)\). We also consider the existence of weak solutions.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
60G22 Fractional processes, including fractional Brownian motion
PDF BibTeX XML Cite
Full Text: DOI Link

References:

[1] Nualart, D.; Răşcanu, A., Differential equations driven by fractional Brownian motion, Collect. Math., 53, 1, 55-81 (2002) · Zbl 1018.60057
[2] Garrido-Atienza, M. J.; Maslowski, B.; Schmalfuss, B., Random attractors for stochastic equations driven by a fractional Brownian motion, Int. J. Bifur. Chaos, 20, 9, 2761-2782 (2010) · Zbl 1202.37073
[3] Grecksch, W.; Anh, V. V., A parabolic stochastic differential equation with fractional Brownian motion input, Statist. Probab. Lett., 41, 337-345 (1999) · Zbl 0937.60064
[4] Maslowski, B.; Nualart, D., Evolution equations driven by a fractional Brownian motion, J. Funct. Anal., 202, 1, 277-305 (2003) · Zbl 1027.60060
[5] Tindel, S.; Tudor, C.; Viens, F., Stochastic evolution equations with fractional brownian motion, Probab. Theory Related Fields, 127, no. 2, 186-204 (2003) · Zbl 1036.60056
[6] Gubinelli, M.; Lejay, A.; Tindel, S., Young integrals and SPDEs, Potential Anal., 25, 4, 307-326 (2006) · Zbl 1103.60062
[7] Garrido-Atienza, M. J.; Lu, K.; Schmalfuss, B., Random dynamical systems for stochastic partial differential equations driven by a fractional Brownian motion, Discrete Contin. Dyn. Syst. Ser. B, 14, 2, 473-493 (2010) · Zbl 1200.37075
[8] Hale, J. K.; Verduyn Lunel, S. M., Introduction to Functional Differential Equations (1995), Springer: Springer New York
[9] Manitius, A., Feedback controllers for a wind tunnel model involving a delay: analytical design and numerical simulation, IEEE Trans. Automat. Control, 29, 12, 1058-1068 (1984)
[10] Kuang, Y., Delay Differential Equations with Applications in Population Dynamics (1993), Academic Press: Academic Press Boston · Zbl 0777.34002
[11] Murray, J. D., Mathematical Biology (1993), Springer-Verlag: Springer-Verlag Berlin · Zbl 0779.92001
[12] Ferrante, M.; Rovira, C., Stochastic delay differential equations driven by fractional Brownian motion with Hurst parameter \(H > 1 / 2\), Bernouilli, 12, 85-100 (2006) · Zbl 1102.60054
[13] Neuenkirch, A.; Nourdin, I.; Tindel, S., Delay equations driven by rough paths, Electron. J. Probab., 13, 2031-2068 (2008) · Zbl 1190.60046
[14] Ferrante, M.; Rovira, C., Convergence of delay differential equations driven by fractional Brownian motion, J. Evol. Equ., 10, 4, 761-783 (2010) · Zbl 1239.60040
[16] Alos, E.; Mazet, O.; Nualart, D., Stochastic calculus with respect to Gaussian processes, Ann. Probab., 29, 766-801 (1999) · Zbl 1015.60047
[17] Mishura, Y., (Stochastic Calculus for Fractional Brownian Motion and Related Topics. Stochastic Calculus for Fractional Brownian Motion and Related Topics, Lecture Notes in Mathematics, 1929 (2008))
[18] Nualart, D., The Malliavin Calculus and Related Topics (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1099.60003
[19] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge University Press · Zbl 0761.60052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.