×

A unified treatment of convexity of relative entropy and related trace functions, with conditions for equality. (English) Zbl 1218.81025

The convexity conjecture on Wigner-Yanase-Dyson skew information was successfully solved by E. H. Lieb [Adv. Math. 11, 267–288 (1973; Zbl 0267.46055)] with an affirmative answer.
The present paper studies the convexity problem for a generalized relative entropy \(J_p(K,A,B)\) introduced by the authors. The quantity \(J_p(K,A,A)\) becomes Wigner-Yanase-Dyson skew information up to a constant factor, where \(K\) is a selfadjoint operator. \(J_p(I,A,I)\) is also equivalent to quantum Tsallis entropy up to a constant factor.
Therefore it may be important to study the mathematical properties of the quantity \(J_p(K,A,B)\) in general from the viewpoint of entropy theory.
The main results in the present paper are the joint convexity with respect to \(A\) and \(B\), and monotonicity on the partial trace. In addition, the equality condition of the above properties (trace inequalities) are studied.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
82B10 Quantum equilibrium statistical mechanics (general)
47N50 Applications of operator theory in the physical sciences
47A63 Linear operator inequalities
15A45 Miscellaneous inequalities involving matrices
94A17 Measures of information, entropy
81P15 Quantum measurement theory, state operations, state preparations

Citations:

Zbl 0267.46055
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Akheizer N. I., Theory of Operators in Hilbert Space (1963)
[2] Amari A., Translations of Mathematical Monographs 191, in: Methods of Information Geometry (2000) · Zbl 0960.62005
[3] Ando T., Lecture Notes, in: Topics on Operator Inequalities (1978)
[4] DOI: 10.1016/0024-3795(79)90179-4 · Zbl 0495.15018
[5] Araki H., Publ RIMS Kyoto Univ. 9 pp 809–
[6] DOI: 10.1016/j.laa.2004.05.002 · Zbl 1060.47019
[7] Carlen E., Amer. Math. Soc. Trans. 189 pp 59–
[8] DOI: 10.1007/s11005-008-0223-1 · Zbl 1171.47015
[9] Devetak I., Phys. Rev. Lett. 100 pp 4–
[10] DOI: 10.1007/978-3-642-65755-9
[11] DOI: 10.1073/pnas.0807965106 · Zbl 1202.81018
[12] DOI: 10.1007/BF01646492 · Zbl 0257.46089
[13] DOI: 10.1007/s00220-004-1049-z · Zbl 1126.82004
[14] Petz D., Comm. Math. Phys. 263 pp 259–
[15] DOI: 10.1142/S0219025706002408 · Zbl 1108.46045
[16] Kiefer J., J. Roy. Statist. Soc. Ser. B 21 pp 272–
[17] DOI: 10.1007/BF01341997
[18] DOI: 10.1063/1.533053 · Zbl 0968.81006
[19] Luo S., Phys. Rev. A 79 pp 3–
[20] DOI: 10.1016/0001-8708(73)90011-X · Zbl 0267.46055
[21] DOI: 10.1007/978-3-642-55925-9
[22] DOI: 10.1103/PhysRevLett.30.434
[23] DOI: 10.1063/1.1666274
[24] DOI: 10.1016/S0001-8708(74)80004-6 · Zbl 0274.46045
[25] DOI: 10.1007/BF01608390 · Zbl 0294.46052
[26] DOI: 10.1007/BF01170633 · Zbl 0008.11301
[27] DOI: 10.1007/s11005-004-4072-2 · Zbl 1055.81012
[28] Narnhofer H., Fizika 17 pp 257–
[29] Ohya M., Quantum Entropy and Its Use (2004)
[30] DOI: 10.1016/0034-4877(86)90067-4 · Zbl 0629.46061
[31] Petz D., Quart. J. Math. 39 pp 907–
[32] DOI: 10.1007/BF01212345 · Zbl 0597.46067
[33] DOI: 10.1016/0024-3795(94)00211-8 · Zbl 0856.15023
[34] DOI: 10.1016/S0034-4877(07)00019-5 · Zbl 1140.82009
[35] Ruelle D., Statistical Mechanics (1969)
[36] DOI: 10.1515/9781400863433
[37] DOI: 10.1007/BF01016429 · Zbl 1082.82501
[38] DOI: 10.1103/RevModPhys.50.221
[39] DOI: 10.1073/pnas.49.6.910 · Zbl 0128.14104
[40] DOI: 10.4153/CJM-1964-041-x · Zbl 0121.26203
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.