×

Sufficient conditions of isolated minimizers for constrained programming problems. (English) Zbl 1218.90214

Authors’ abstract: “In this article, sufficient optimality conditions for nonsmooth programming problems with inequality constraints are studied. When the objective and constraint functions are \(\ell \)-stable at some point, a first-order sufficient optimality condition for an isolated local minimizer of order 1 is established. A second-order sufficient optimality condition for an isolated local minimizer of order 2 is obtained in terms of the lower Dini second-order directional derivatives of the Lagrangian function. The obtained results extend and improve the ones found by D. E. Ward [J. Optimization Theory Appl. 80, No. 3, 551–572 (1994; Zbl 0797.90101)].”

MSC:

90C46 Optimality conditions and duality in mathematical programming
90C30 Nonlinear programming

Citations:

Zbl 0797.90101
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] DOI: 10.1137/0322017 · Zbl 0538.49020
[2] DOI: 10.1007/s10107-007-0094-8 · Zbl 1211.90276
[3] DOI: 10.1016/j.na.2007.09.006 · Zbl 1146.49017
[4] DOI: 10.1016/j.aml.2009.01.019 · Zbl 1162.49018
[5] DOI: 10.1016/j.na.2008.03.011 · Zbl 1158.49022
[6] DOI: 10.1051/ro/2009023 · Zbl 1193.49016
[7] DOI: 10.1007/s00186-005-0023-7 · Zbl 1103.90089
[8] DOI: 10.1007/BF01390337 · Zbl 0352.65012
[9] DOI: 10.1007/BF00425960 · Zbl 0864.49012
[10] DOI: 10.1007/s10107-005-0621-4 · Zbl 1102.90058
[11] DOI: 10.1007/0-387-24276-7_27
[12] DOI: 10.1007/s10492-006-0002-1 · Zbl 1164.90399
[13] DOI: 10.1007/BF01442169 · Zbl 0542.49011
[14] DOI: 10.1007/s10479-007-0197-x · Zbl 1190.90265
[15] DOI: 10.1080/02331938808843333 · Zbl 0647.49014
[16] DOI: 10.1007/s10957-007-9169-1 · Zbl 1149.90134
[17] H.W. Kuhn and A.W. Tucker ( 1951 ).Nonlinear Programming, Proceedings of the 2nd Berkeley Symposium on Mathematical Statistics and Probability. Berkeley , California , pp. 481 – 492 . · Zbl 0044.05903
[18] DOI: 10.1023/A:1023068513188 · Zbl 0903.90152
[19] Peano G., Atti Dell’ Accademia Delle Science di Torino 27 pp 40– (1891)
[20] DOI: 10.1137/0324061 · Zbl 0604.49017
[21] DOI: 10.1007/BF02207780 · Zbl 0797.90101
[22] DOI: 10.1080/02331939208843851 · Zbl 0814.49012
[23] DOI: 10.1080/01630569308816543 · Zbl 0804.90114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.