zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A numerical method for the expected penalty-reward function in a Markov-modulated jump-diffusion process. (English) Zbl 1218.91075
Summary: A generalization of the Cramér-Lundberg risk model perturbed by a diffusion is proposed. Aggregate claims of an insurer follow a compound Poisson process and premiums are collected at a constant rate with additional random fluctuation. The insurer is allowed to invest the surplus into a risky asset with volatility dependent on the level of the investment, which permits the incorporation of rational investment strategies as proposed by Berk and Green (2004). The return on investment is modulated by a Markov process which generalizes previously studied settings for the evolution of the interest rate in time. The Gerber-Shiu expected penalty-reward function is studied in this context, including ruin probabilities (a first-passage problem) as a special case. The second order integro-differential system of equations that characterizes the function of interest is obtained. As a closed-form solution does not exist, a numerical procedure based on the Chebyshev polynomial approximation through a collocation method is proposed. Finally, some examples illustrating the procedure are presented.

91B30Risk theory, insurance
60J70Applications of Brownian motions and diffusion theory
60K10Applications of renewal theory
Full Text: DOI
[1] Akyuz-Dascioglu, A.: A Chebyshev polynomial approach for linear Fredholm--Volterra integro--differential equations in the most general form, Applied mathematics and computation 181, No. 1, 103-112 (2007) · Zbl 1148.65318 · doi:10.1016/j.amc.2006.01.018
[2] Akyuz-Dascioglu, A.; Sezer, M.: Chebyshev polynomial solutions of systems of higher-order linear Fredholm--Volterra integro--differential equations, Journal of the franklin institute 342, No. 6, 688-701 (2005) · Zbl 1086.65121 · doi:10.1016/j.jfranklin.2005.04.001
[3] Asmussen, S.; Albrecher, H.: Ruin probabilities, (2010) · Zbl 1247.91080
[4] Avram, F.; Usabel, M.: The gerber--shiu expected discounted penalty--reward function under an affine jump--diffusion model, Astin bulletin 38, No. 2, 461-481 (2008) · Zbl 1256.91025
[5] Berk, J.; Green, R.: Mutual fund flows and performance in rational markets, Journal of political economy 112, No. 6, 1269-1295 (2004)
[6] Boyd, J.: Chebyshev and Fourier spectral methods, (2001) · Zbl 0994.65128
[7] Cai, J.; Yang, H.: Ruin in the perturbed compound Poisson risk process under interest force, Advances in applied probability 37, No. 3, 819-835 (2005) · Zbl 1074.60090 · doi:10.1239/aap/1127483749
[8] Clenshaw, C.; Curtis, A.: A method for numerical integration on an automatic computer, Numerische Mathematik 2, No. 1, 197-205 (1960) · Zbl 0093.14006 · doi:10.1007/BF01386223
[9] Dufresne, F.; Gerber, H.: Risk theory for the compound Poisson process that is perturbed by diffusion, Insurance mathematics and economics 10, No. 1, 51-59 (1991) · Zbl 0723.62065 · doi:10.1016/0167-6687(91)90023-Q
[10] Gaier, J.; Grandits, P.: Ruin probabilities and investment under interest force in the presence of regularly varying tails, Scandinavian actuarial journal 2004, No. 4, 256-278 (2004) · Zbl 1091.62102 · doi:10.1080/03461230410020310
[11] Gerber, H.: An extension of the renewal equation and its application in the collective theory of risk, Skandinavisk aktuarietidskrift 53, 205-210 (1970) · Zbl 0229.60062
[12] Gerber, H.; Landry, B.: On the discounted penalty at ruin in a jump--diffusion and the perpetual put option, Insurance mathematics and economics 22, No. 3, 263-276 (1998) · Zbl 0924.60075 · doi:10.1016/S0167-6687(98)00014-6
[13] Gerber, H.; Shiu, E.: The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin, Insurance: mathematics and economics 21, No. 2, 129-137 (1997) · Zbl 0894.90047 · doi:10.1016/S0167-6687(97)00027-9
[14] Gerber, H.; Shiu, E.: On the time value of ruin, North American actuarial journal 2, 48-71 (1998) · Zbl 1081.60550
[15] Grandits, P.: Minimal ruin probabilities and investment under interest force for a class of subexponential distributions, Scandinavian actuarial journal 2005, No. 6, 401-416 (2005) · Zbl 1142.91042 · doi:10.1080/03461230500215479
[16] Kushner, H. J. J.; Dupuis, P.: Numerical methods for stochastic control problems in continuous time, (1992) · Zbl 0754.65068
[17] Le, U.; Pascali, E.: Existence theorems for systems of nonlinear integro--differential equations, Ricerche di matematica 58, No. 1, 91-101 (2009) · Zbl 1185.45010 · doi:10.1007/s11587-009-0049-x
[18] Li, S.; Garrido, J.: Ruin probabilities for two classes of risk processes, ASTIN bulletin 35, No. 1, 61-77 (2005) · Zbl 1098.62139 · doi:10.2143/AST.35.1.583166
[19] Ma, J.; Sun, X.: Ruin probabilities for insurance models involving investments, Scandinavian actuarial journal 2003, No. 3, 217-237 (2003) · Zbl 1039.91045 · doi:10.1080/03461230110106381
[20] Morales, M.: On the expected discounted penalty function for a perturbed risk process driven by a subordinator, Insurance mathematics and economics 40, No. 2, 293-301 (2007) · Zbl 1130.91032 · doi:10.1016/j.insmatheco.2006.04.008
[21] Paulsen, J.: Risk theory in a stochastic economic environment, Stochastic processes and their applications 46, No. 2, 327-361 (1993) · Zbl 0777.62098 · doi:10.1016/0304-4149(93)90010-2
[22] Paulsen, J.; Gjessing, H.: Optimal choice of dividend barriers for a risk process with stochastic return on investments, Insurance mathematics and economics 20, No. 3, 215-223 (1997) · Zbl 0894.90048 · doi:10.1016/S0167-6687(97)00011-5
[23] Ren, J.: The expected value of the time of ruin and the moments of the discounted deficit at ruin in the perturbed classical risk process, Insurance mathematics and economics 37, No. 3, 505-521 (2005) · Zbl 1129.91027 · doi:10.1016/j.insmatheco.2005.05.002
[24] Risken, H.: The Fokker--Planck equation: methods of solution and applications, (1996) · Zbl 0866.60071
[25] Sarkar, J.; Sen, A.: Weak convergence approach to compound Poisson risk processes perturbed by diffusion, Insurance mathematics and economics 36, No. 3, 421-432 (2005) · Zbl 1242.91097
[26] Sezer, M.; Kaynak, M.: Chebyshev polynomial solutions of linear differential equations, International journal of mathematical education in science and technology 27, No. 4, 607-618 (1996) · Zbl 0887.34012 · doi:10.1080/0020739960270414
[27] Usabel, M.: Calculating multivariate ruin probabilities via gaver-Stehfest inversion technique, Insurance: mathematics and economics 25, No. 2, 133-142 (1999) · Zbl 1028.91561 · doi:10.1016/S0167-6687(99)00029-3
[28] Wang, G.: A decomposition of the ruin probability for the risk process perturbed by diffusion, Insurance mathematics and economics 28, No. 1, 49-59 (2001) · Zbl 0993.60087 · doi:10.1016/S0167-6687(00)00065-2
[29] Wang, G.; Wu, R.: The expected discounted penalty function for the perturbed compound Poisson risk process with constant interest, Insurance: mathematics and economics 42, No. 1, 59-64 (2008) · Zbl 1141.91551 · doi:10.1016/j.insmatheco.2006.12.003