×

zbMATH — the first resource for mathematics

Compensating unremovable imperfections in operation units. (English. Russian original) Zbl 1218.93074
Autom. Remote Control 71, No. 5, 747-771 (2010); translation from Avtom. Telemekh. 2010, No. 5, 21-47 (2010).
Summary: We consider the problem of stabilizing a linear stationary system with disconnected control laws, where imperfections of operation units lead to autooscillations (“chattering”) in a stabilized mode. If constructive possibilities have been exhausted, and unremovable imperfections still lead to an unsatisfactory control process, one has to use additional possibilities connected with feedback control algorithms. This work presents algorithms in which increasing the feedback amplification coefficients and using an additional high-frequency signal leads to reduced “chattering.” We obtain numerical estimates of the parameters that characterize the quality of stabilized modes for a finite frequency of switching the relay elements.

MSC:
93D15 Stabilization of systems by feedback
93C05 Linear systems in control theory
93B40 Computational methods in systems theory (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Filippov, A.F., Differential Equations with Disconnected Right-Hand Side, Mat. Sb., 1960, vol. 51, no. 93:1, pp. 99–128. · Zbl 0138.32204
[2] Aizerman, M.A. and Pyatnitskii, E.S., Foundations of a Theory of Discontinuous Systems. I, Autom. Remote Control, 1974, vol. 35, no. 7, part 1, pp. 1066–1079.
[3] Sistemy avtomaticheskogo upravleniya s peremennoi strukturoi (Automated Control Systems with Variable Structure), Emel’yanov, S.V., Ed., Moscow: Nauka, 1967.
[4] Utkin, V.I., Skol’zyashchie rezhimy v zadachakh optimizatsii i upravleniya (Sliding Modes in Optimization and Control Problems), Moscow: Nauka, 1982.
[5] Modern Sliding Mode Control Theory, in Series Lecture Notes in Control and Information Sciences, Bartolini, G., Fridman, L., Pisano, A., and Usai, E., Eds., Berlin: Springer, 2008, vol. 375.
[6] Fel’dbaum, A.A., Elektricheskie sistemy avtomaticheskogo regulirovaniya (Electric Systems of Automatic Control), Moscow: Oborongiz, 1957.
[7] Bondarev, A.G., Bondarev, S.A., Kostyleva, N.Ye., and Utkin, V.I., Sliding Modes in Systems with Asymptotic State Observers, Autom. Remote Control, 1985, vol. 46, no. 6, pp. 679–684. · Zbl 0604.93008
[8] Utkin, V.I. and Yang, K.D., Methods for Constructing Discontinuity Planes in Multidimensional Variable Structure Systems, Autom. Remote Control, 1978, vol. 39, no. 10, part 1, pp. 1466–1470. · Zbl 0419.93045
[9] Gelig, A.Kh., Leonov, G.A., and Yakubovich, V.A., Ustoichivost’ nelineinykh sistem s needinstvennym sostoyaniem ravnovesiya (Stability of Nonlinear Systems with a Non-Unique Equilibrium State), Moscow: Nauka, 1978. · Zbl 0544.93051
[10] Filippov, A.F., Differentsial’nye uravneniya s razryvnoi pravoi chast’yu (Differential Equations with Disconnected Right-Hand Side), Moscow: Nauka, 1985. · Zbl 0571.34001
[11] Bogolyubov, N.N. and Mitropol’skii, Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii (Asymptotic Methods in Nonlinear Oscillations Theory), Moscow: Nauka, 1974. · Zbl 0303.34043
[12] Tsypkin, Ya.Z., Releinye avtomaticheskie sistemy (Automatic Relay Systems), Moscow: Nauka, 1974.
[13] Nguen Huang Hyng and Utkin, V.A., Control of DC Electric Motor, Autom. Remote Control, 2006, no. 5, pp. 767–782. · Zbl 1120.93349
[14] Krasovskii, A.A., On a Vibrational Approach to Linearizing Certain Nonlinearities), Avtom. Telemekh., 1948, no. 1, pp. 34–42.
[15] Andreev, Yu.N., Upravlenie konechnomernymi lineinymi ob”ektami (Controlling Finite-dimensional Linear Objects), Moscow: Nauka, 1976.
[16] Wonham, W.M., Linear Multivariable Control: A Geometric Approach, New York: Springer-Verlag, 1979. Translated under the title Lineinye mnogomernye sistemy upravleniya. Geometricheskii podkhod, Moscow: Nauka, 1980. · Zbl 0424.93001
[17] Utkin, V.A., The Method of Dynamic Compensation in a Problem of Estimation of External Disturbances, Proc. SICPRO’06, Moscow, 2006, pp. 754–771.
[18] Iannelli, L. and Vasca, F., Dither for Chattering Reduction in Sliding Mode Control Systems, Proc. IEEE Int. Sympos. Circuits Syst., Vancouver, 2004, vol. 4, pp. 709–712.
[19] Iannelli, L., Johansson, K.H., J√∂nsson, U.T., and Vasca, F., Averaging of Nonsmooth Systems Using Dither Automatica, 2006, vol. 42, no. 4, pp. 669–676. · Zbl 1110.93044 · doi:10.1016/j.automatica.2005.12.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.