Berger, Laurent Construction of \((\phi,\Gamma)\)-modules: \(p\)-adic representations and \(B\)-pairs. (Construction de \((\phi,\Gamma)\)-modules: représentations \(p\)-adiques et \(B\)-paires.) (English) Zbl 1219.11078 Algebra Number Theory 2, No. 1, 91-120 (2008). Summary: Let \(B_e = B_{\text{cris}}^{\varphi=1}\). We study the category of \(B\)-pairs \((W_e,W_{dR}^+)\) where \(W_e\) is a free \(B_e\)-module with a semilinear and continuous action of \(G_K\) and where \(W_{dR}^+\) is a \(G_K\)-stable \(B_{dR}^+\)-lattice in \(B_{dR}\otimes_{B_e}W_e\). This category contains the category of \(p\)-adic representations and is naturally equivalent to the category of all \((\varphi, \Gamma)\)-modules over the Robba ring. Cited in 1 ReviewCited in 18 Documents MSC: 11F80 Galois representations 11F85 \(p\)-adic theory, local fields 14F30 \(p\)-adic cohomology, crystalline cohomology 11S25 Galois cohomology 11S20 Galois theory Keywords:\(p\)-adic Hodge theory; \((\varphi; \Gamma)\)-modules; Frobenius slopes; B-pairs PDF BibTeX XML Cite \textit{L. Berger}, Algebra Number Theory 2, No. 1, 91--120 (2008; Zbl 1219.11078) Full Text: DOI OpenURL