Construction of \((\phi,\Gamma)\)-modules: \(p\)-adic representations and \(B\)-pairs. (Construction de \((\phi,\Gamma)\)-modules: représentations \(p\)-adiques et \(B\)-paires.) (English) Zbl 1219.11078

Summary: Let \(B_e = B_{\text{cris}}^{\varphi=1}\). We study the category of \(B\)-pairs \((W_e,W_{dR}^+)\) where \(W_e\) is a free \(B_e\)-module with a semilinear and continuous action of \(G_K\) and where \(W_{dR}^+\) is a \(G_K\)-stable \(B_{dR}^+\)-lattice in \(B_{dR}\otimes_{B_e}W_e\). This category contains the category of \(p\)-adic representations and is naturally equivalent to the category of all \((\varphi, \Gamma)\)-modules over the Robba ring.


11F80 Galois representations
11F85 \(p\)-adic theory, local fields
14F30 \(p\)-adic cohomology, crystalline cohomology
11S25 Galois cohomology
11S20 Galois theory
Full Text: DOI