×

A categorification of quantum \(\mathfrak{sl}(2)\). (English) Zbl 1219.17012

The author categorifies Lusztig’s algebra \(\dot{\mathbf U}\) – a version of the quantized enveloping algebra \({\mathbf U}_q(\mathfrak{sl}_2)\). He constructs a 2-category \(\dot{\mathcal U}\) such that the split Grothendieck ring \(K_0(\dot{\mathcal U})\) is isomorphic to \(\dot{\mathbf U}\) and shows that the indecomposable 1-morphisms of \(\dot{\mathcal U}\) with no shift correspond to elements in Lusztig’s canonical basis. The Homs between 1-morphisms are graded lifts of a semilinear form defined on \(\dot{\mathbf U}\). For each positive integer \(N\) a representation of \(\dot{\mathcal U}\) is constructed using iterated flag varieties that categorifies the irreducible \((N+1)\)-dimensional representation of \(\dot{\mathbf U}\).

MSC:

17B37 Quantum groups (quantized enveloping algebras) and related deformations
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)

References:

[1] Balmer, P.; Schlichting, M., Idempotent completion of triangulated categories, J. Algebra, 236, 2, 819-834 (2001) · Zbl 0977.18009
[2] Bar-Natan, D.; Morrison, S., The Karoubi envelope and Lee’s degeneration of Khovanov homology, Algebr. Geom. Topol., 6, 1459-1469 (2006), (electronic) · Zbl 1130.57012
[3] Bartlett, B., The geometry of unitary 2-representations of finite groups and their 2-characters (2008)
[4] Beĭlinson, A. A.; Lusztig, G.; MacPherson, R., A geometric setting for the quantum deformation of \(GL_n\), Duke Math. J., 61, 2, 655-677 (1990) · Zbl 0713.17012
[5] Benson, D. J., Representations and Cohomology. I: Basic Representation Theory of Finite Groups and Associative Algebras, Cambridge Stud. Adv. Math., vol. 30 (1998), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0908.20001
[6] Bernšteĭn, I. N.; Gel’fand, I. M.; Gel’fand, S. I., Schubert cells and the cohomology of a flag space, Funktsional. Anal. i Prilozhen., 7, 1, 64-65 (1973) · Zbl 0282.20035
[7] Bernstein, J.; Frenkel, I.; Khovanov, M., A categorification of the Temperley-Lieb algebra and Schur quotients of \(u(sl_2)\) via projective and Zuckerman functors, Selecta Math. (N.S.), 5, 2, 199-241 (1999) · Zbl 0981.17001
[8] Borceux, F., Handbook of Categorical Algebra. 1, Encyclopedia Math. Appl., vol. 50 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0803.18001
[9] Borceux, F., Handbook of Categorical Algebra. 2, Encyclopedia Math. Appl., vol. 51 (1994), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0843.18001
[10] Borel, A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2), 57, 115-207 (1953) · Zbl 0052.40001
[11] Carpentier, R. P., From planar graphs to embedded graphs—a new approach to Kauffman and Vogel’s polynomial, J. Knot Theory Ramifications, 9, 8, 975-986 (2000) · Zbl 0976.57008
[12] Chuang, J.; Rouquier, R., Derived equivalences for symmetric groups and sl_2-categorification, Ann. of Math., 167, 245-298 (2008) · Zbl 1144.20001
[13] Cockett, J. R.B.; Koslowski, J.; Seely, R. A.G., Introduction to linear bicategories, The Lambek Festschrift: Mathematical Structures in Computer Science. The Lambek Festschrift: Mathematical Structures in Computer Science, Montreal, QC, 1997. The Lambek Festschrift: Mathematical Structures in Computer Science. The Lambek Festschrift: Mathematical Structures in Computer Science, Montreal, QC, 1997, Math. Structures Comput. Sci., 10, 2, 165-203 (2000) · Zbl 0991.18007
[14] Crane, L.; Frenkel, I., Four-dimensional topological quantum field theory, Hopf categories, and the canonical bases, Topology and Physics. Topology and Physics, J. Math. Phys., 35, 10, 5136-5154 (1994) · Zbl 0892.57014
[15] Demazure, M., Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math., 21, 287-301 (1973) · Zbl 0269.22010
[17] Frenkel, I.; Khovanov, M.; Stroppel, C., A categorification of finite-dimensional irreducible representations of quantum \(sl(2)\) and their tensor products, Selecta Math. (N.S.), 12, 3-4, 379-431 (2006) · Zbl 1188.17011
[18] Freyd, P. J.; Yetter, D. N., Braided compact closed categories with applications to low-dimensional topology, Adv. Math., 77, 2, 156-182 (1989) · Zbl 0679.57003
[19] Fulton, W., Young Tableaux: With Applications to Representation Theory and Geometry, London Math. Soc. Stud. Texts, vol. 35 (1997), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0878.14034
[20] Ganter, N.; Kapranov, M., Representation and character theory in 2-categories, Adv. Math., 217, 5, 2268-2300 (2008) · Zbl 1136.18001
[21] Grojnowski, I.; Lusztig, G., On bases of irreducible representations of quantum \(GL_n\), (Kazhdan-Lusztig Theory and Related Topics. Kazhdan-Lusztig Theory and Related Topics, Chicago, IL, 1989. Kazhdan-Lusztig Theory and Related Topics. Kazhdan-Lusztig Theory and Related Topics, Chicago, IL, 1989, Contemp. Math., vol. 139 (1992), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 167-174 · Zbl 0815.20029
[22] Heller, A., Homological algebra in abelian categories, Ann. of Math. (2), 68, 484-525 (1958) · Zbl 0084.26704
[23] Hiller, H., Geometry of Coxeter Groups, Res. Notes Math., vol. 54 (1982), Pitman (Advanced Publishing Program): Pitman (Advanced Publishing Program) Boston, MA · Zbl 0483.57002
[24] Joyal, A.; Street, R., The geometry of tensor calculus. I, Adv. Math., 88, 1, 55-112 (1991) · Zbl 0738.18005
[25] Kelly, G. M., Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Note Ser., vol. 64 (1982), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0478.18005
[26] Kelly, G. M.; Street, R., Review of the elements of 2-categories, (Category Seminar, Proc. Sem.. Category Seminar, Proc. Sem., Sydney, 1972/1973. Category Seminar, Proc. Sem.. Category Seminar, Proc. Sem., Sydney, 1972/1973, Lecture Notes in Math., vol. 420 (1974), Springer: Springer Berlin), 75-103 · Zbl 0334.18016
[27] Khovanov, M., NilCoxeter algebras categorify the Weyl algebra, Comm. Algebra, 29, 11, 5033-5052 (2001) · Zbl 1018.16015
[28] Khovanov, M., A functor-valued invariant of tangles, Algebr. Geom. Topol., 2, 665-741 (2002), (electronic) · Zbl 1002.57006
[29] Khovanov, M.; Mazorchuk, V.; Stroppel, C., A brief review of abelian categorifications (2007)
[30] Kostant, B.; Kumar, S., The nilHecke ring and cohomology of \(G / P\) for a Kac-Moody group \(G\), Adv. Math., 62, 3, 187-237 (1986) · Zbl 0641.17008
[31] Lascoux, A.; Schützenberger, M. P., Polynômes de Schubert, C. R. Acad. Sci. Paris Sér. I Math., 294, 13, 447-450 (1982) · Zbl 0495.14031
[32] Lauda, A. D., Frobenius algebras and planar open string topological field theories (2005)
[33] Lauda, A. D., Frobenius algebras and ambidextrous adjunctions, Theory Appl. Categ., 16, 84-122 (2006) · Zbl 1092.18003
[34] Lusztig, G., Introduction to Quantum Groups, Progr. Math., vol. 110 (1993), Birkhäuser Boston Inc.: Birkhäuser Boston Inc. Boston, MA · Zbl 0788.17010
[35] Mackaay, M., Spherical 2-categories and 4-manifold invariants, Adv. Math., 143, 2, 288-348 (1999) · Zbl 0946.57021
[36] Manivel, L., Symmetric Functions, Schubert Polynomials and Degeneracy Loci, SMF/AMS Texts Monogr., vol. 6 (2001), American Mathematical Society: American Mathematical Society Providence, RI, translated from the 1998 French original by John R. Swallow, Cours Spécialisés [Specialized Courses], 3 · Zbl 0998.14023
[37] Müger, M., From subfactors to categories and topology. I. Frobenius algebras in and Morita equivalence of tensor categories, J. Pure Appl. Algebra, 180, 1-2, 81-157 (2003) · Zbl 1033.18002
[38] Postnikov, A., Enumeration in algebra and geometry (1997), Ph.D. thesis, MIT, 1997 available at
[39] Rouquier, R., Derived equivalences and finite dimensional algebras, (International Congress of Mathematicians, vol. II (2006), Eur. Math. Soc.: Eur. Math. Soc. Zürich), 191-221 · Zbl 1108.20006
[41] Street, R., Categorical structures, (Handbook of Algebra, vol. 1 (1996), North-Holland: North-Holland Amsterdam), 529-577 · Zbl 0854.18001
[42] Stroppel, C., Categorification of the Temperley-Lieb category, tangles, and cobordisms via projective functors, Duke Math. J., 126, 3, 547-596 (2005) · Zbl 1112.17010
[44] Zheng, H., A geometric categorification of tensor products of \(u_q(sl_2)\)-modules (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.