zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory. (English) Zbl 1219.34039
Summary: An impulsive boundary value problem with a parameter is considered. By using critical point theory, some criteria are obtained to guarantee that the impulsive problem has at least one solution, two solutions and infinitely many solutions when the parameter lies in different intervals. The results obtained are also valid and new for a problem discussed in the literature.

34B37Boundary value problems for ODE with impulses
34B08Parameter dependent boundary value problems for ODE
58E05Abstract critical point theory
47J30Variational methods (nonlinear operator equations)
Full Text: DOI
[1] Tian, Y.; Ge, W.: Second-order Sturm--Liouville boundary value problem involving the one-dimensional p-Laplacian, Rocky mountain J. Math. 38, 309-327 (2008) · Zbl 1171.34019 · doi:10.1216/RMJ-2008-38-1-309
[2] Tian, Y.; Ge, W.: Multiple positive solutions for a second order Sturm--Liouville boundary value problem with a p-Laplacian via variational methods, Rocky mountain J. Math. 39, 325-342 (2009) · Zbl 1171.34012 · doi:10.1216/RMJ-2009-39-1-325
[3] Ji, D.; Ge, W.: Existence of multiple positive solutions for Sturm--Liouville-like four-point boundary value problem with p-Laplacian, Nonlinear anal. 68, 2638-2646 (2008) · Zbl 1145.34309 · doi:10.1016/j.na.2007.02.010
[4] Yang, J.; Wei, Z.; Liu, K.: Existence of symmetric positive solutions for a class of Sturm--Liouville-like boundary value problems, Appl. math. Comput. 214, 424-432 (2009) · Zbl 1215.34035 · doi:10.1016/j.amc.2009.04.008
[5] Sun, B.; Ge, W.: Existence and iteration of positive solutions to a class of Sturm--Liouville-like p-Laplacian boundary value problems, Nonlinear anal. 69, 1454-1461 (2008) · Zbl 1151.34021 · doi:10.1016/j.na.2007.06.045
[6] Tian, Y.; Ge, W.: Applications of variational methods to boundary value problem for impulsive differential equations, Proc. edinb. Math. soc. 51, 509-527 (2008) · Zbl 1163.34015 · doi:10.1017/S0013091506001532
[7] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, Series modern appl. Math. 6 (1989) · Zbl 0719.34002
[8] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations, (1995) · Zbl 0837.34003
[9] Liang, J.; Liu, J. H.; Xiao, T.: Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. comput. Modelling 49, 798-804 (2009) · Zbl 1173.34048 · doi:10.1016/j.mcm.2008.05.046
[10] Shen, J.; Li, J.: Existence and global attractivity of positive periodic solutions for impulsive predator--prey model with dispersion and time delays, Nonlinear anal. RWA 10, 227-243 (2009) · Zbl 1154.34372 · doi:10.1016/j.nonrwa.2007.08.026
[11] Lee, E. K.; Lee, Y.: Multiple positive solutions of a singular Gelfand type problem for second-order impulsive differential systems, Math. comput. Modelling 40, 307-328 (2004) · Zbl 1070.34044 · doi:10.1016/j.mcm.2003.12.007
[12] Dai, B.; Su, H.; Hu, D.: Periodic solution of a delayed ratio-dependent predator--prey model with monotonic functional response and impulse, Nonlinear anal. TMA 70, 126-134 (2009) · Zbl 1166.34043 · doi:10.1016/j.na.2007.11.036
[13] Georgescu, P.; Morosanu, G.: Pest regulation by means of impulsive controls, Appl. math. Comput. 190, 790-803 (2007) · Zbl 1117.93006 · doi:10.1016/j.amc.2007.01.079
[14] Zhang, N.; Dai, B.; Qian, X.: Periodic solutions for a class of higher-dimension functional differential equations with impulses, Nonlinear anal. TMA 68, 629-638 (2008) · Zbl 1134.34045 · doi:10.1016/j.na.2006.11.024
[15] Lee, E. K.; Lee, Y. H.: Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation, Appl. math. Comput. 158, 745-759 (2004) · Zbl 1069.34035 · doi:10.1016/j.amc.2003.10.013
[16] Franco, D.; Nieto, J. J.: Maximum principle for periodic impulsive first order problems, J. comput. Appl. math. 88, 149-159 (1998) · Zbl 0898.34010 · doi:10.1016/S0377-0427(97)00212-4
[17] Agarwal, R. P.; O’regan, D.: Multiple nonnegative solutions for second order impulsive differential equations, Appl. math. Comput. 114, 51-59 (2000) · Zbl 1047.34008 · doi:10.1016/S0096-3003(99)00074-0
[18] Lin, X. N.; Jiang, D. Q.: Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations, J. math. Anal. appl. 321, 501-514 (2006) · Zbl 1103.34015 · doi:10.1016/j.jmaa.2005.07.076
[19] Nieto, J. J.; O’regan, D.: Variational approach to impulsive differential equations, Nonlinear anal. RWA 10, 680-690 (2009) · Zbl 1167.34318 · doi:10.1016/j.nonrwa.2007.10.022
[20] Zhang, H.; Li, Z.: Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear anal. RWA 11, 67-78 (2010) · Zbl 1186.34089 · doi:10.1016/j.nonrwa.2008.10.016
[21] Zhou, J.; Li, Y.: Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear anal. TMA 72, 1594-1603 (2010) · Zbl 1193.34057 · doi:10.1016/j.na.2009.08.041
[22] Zhang, Z.; Yuan, R.: An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear anal. RWA 11, 155-162 (2010) · Zbl 1191.34039 · doi:10.1016/j.nonrwa.2008.10.044
[23] Tian, Y.; Ge, W.: Variational methods to Sturm--Liouville boundary value problem for impulsive differential equations, Nonlinear anal. TMA 72, 277-287 (2010) · Zbl 1191.34038 · doi:10.1016/j.na.2009.06.051
[24] Zhou, J.; Li, Y.: Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Nonlinear anal. TMA 71, 2856-2865 (2009) · Zbl 1175.34035 · doi:10.1016/j.na.2009.01.140
[25] Sun, J.; Chen, H.; Nieto, J. J.; Otero-Novoa, M.: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear anal. 72, 4575-4586 (2010) · Zbl 1198.34036 · doi:10.1016/j.na.2010.02.034
[26] Sun, J.; Chen, H.; Yang, L.: Existence and multiplicity of solutions for impulsive differential equation with two parameters via variational method, Nonlinear anal. (2010) · Zbl 1198.34037
[27] Sun, J.; Chen, H.: Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant Fountain theorems, Nonlinear anal. RWA (2010) · Zbl 1208.34031
[28] Mawhin, J.; Willem, M.: Critical point theory and Hamiltonian systems, (1989) · Zbl 0676.58017
[29] Zeidler, E.: Nonlinear functional analysis and its applications, Nonlinear functional analysis and its applications (1985) · Zbl 0583.47051
[30] Rabinowitz, P. H.: Minimax methods in critical point theory with applications to differential equations, CBMS regional conference series in mathematics 65 (1986) · Zbl 0609.58002
[31] Simon, J.: Regularité de la solution d’une equation non lineaire dans rn, Lecture notes in mathematics 665 (1978) · Zbl 0402.35017