Bai, Liang; Dai, Binxiang Existence and multiplicity of solutions for an impulsive boundary value problem with a parameter via critical point theory. (English) Zbl 1219.34039 Math. Comput. Modelling 53, No. 9-10, 1844-1855 (2011). Summary: An impulsive boundary value problem with a parameter is considered. By using critical point theory, some criteria are obtained to guarantee that the impulsive problem has at least one solution, two solutions and infinitely many solutions when the parameter lies in different intervals. The results obtained are also valid and new for a problem discussed in the literature. Cited in 24 Documents MSC: 34B37 Boundary value problems with impulses for ordinary differential equations 34B08 Parameter dependent boundary value problems for ordinary differential equations 58E05 Abstract critical point theory (Morse theory, Lyusternik-Shnirel’man theory, etc.) in infinite-dimensional spaces 47J30 Variational methods involving nonlinear operators Keywords:impulsive; critical point; \(p\)-Laplacian; Sturm-Liouville boundary value problem PDF BibTeX XML Cite \textit{L. Bai} and \textit{B. Dai}, Math. Comput. Modelling 53, No. 9--10, 1844--1855 (2011; Zbl 1219.34039) Full Text: DOI References: [1] Tian, Y.; Ge, W., Second-order Sturm-Liouville boundary value problem involving the one-dimensional \(p\)-Laplacian, Rocky Mountain J. Math., 38, 309-327 (2008) · Zbl 1171.34019 [2] Tian, Y.; Ge, W., Multiple positive solutions for a second order Sturm-Liouville boundary value problem with a \(p\)-Laplacian via variational methods, Rocky Mountain J. Math., 39, 325-342 (2009) · Zbl 1171.34012 [3] Ji, D.; Ge, W., Existence of multiple positive solutions for Sturm-Liouville-like four-point boundary value problem with \(p\)-Laplacian, Nonlinear Anal., 68, 2638-2646 (2008) · Zbl 1145.34309 [4] Yang, J.; Wei, Z.; Liu, K., Existence of symmetric positive solutions for a class of Sturm-Liouville-like boundary value problems, Appl. Math. Comput., 214, 424-432 (2009) · Zbl 1215.34035 [5] Sun, B.; Ge, W., Existence and iteration of positive solutions to a class of Sturm-Liouville-like \(p\)-Laplacian boundary value problems, Nonlinear Anal., 69, 1454-1461 (2008) · Zbl 1151.34021 [6] Tian, Y.; Ge, W., Applications of variational methods to boundary value problem for impulsive differential equations, Proc. Edinb. Math. Soc., 51, 509-527 (2008) · Zbl 1163.34015 [7] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S., (Theory of Impulsive Differential Equations. Theory of Impulsive Differential Equations, Series Modern Appl. Math., vol. 6 (1989), World Scientific: World Scientific Teaneck, NJ) · Zbl 0719.34002 [8] Samoilenko, A. M.; Perestyuk, N. A., Impulsive Differential Equations (1995), World Scientific: World Scientific Singapore · Zbl 0837.34003 [9] Liang, J.; Liu, J. H.; Xiao, T., Nonlocal impulsive problems for nonlinear differential equations in Banach spaces, Math. Comput. Modelling, 49, 798-804 (2009) · Zbl 1173.34048 [10] Shen, J.; Li, J., Existence and global attractivity of positive periodic solutions for impulsive predator-prey model with dispersion and time delays, Nonlinear Anal. RWA, 10, 227-243 (2009) · Zbl 1154.34372 [11] Lee, E. K.; Lee, Y., Multiple positive solutions of a singular Gelfand type problem for second-order impulsive differential systems, Math. Comput. Modelling, 40, 307-328 (2004) · Zbl 1070.34044 [12] Dai, B.; Su, H.; Hu, D., Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse, Nonlinear Anal. TMA, 70, 126-134 (2009) · Zbl 1166.34043 [13] Georgescu, P.; Morosanu, G., Pest regulation by means of impulsive controls, Appl. Math. Comput., 190, 790-803 (2007) · Zbl 1117.93006 [14] Zhang, N.; Dai, B.; Qian, X., Periodic solutions for a class of higher-dimension functional differential equations with impulses, Nonlinear Anal. TMA, 68, 629-638 (2008) · Zbl 1134.34045 [15] Lee, E. K.; Lee, Y. H., Multiple positive solutions of singular two point boundary value problems for second order impulsive differential equation, Appl. Math. Comput., 158, 745-759 (2004) · Zbl 1069.34035 [16] Franco, D.; Nieto, J. J., Maximum principle for periodic impulsive first order problems, J. Comput. Appl. Math., 88, 149-159 (1998) · Zbl 0898.34010 [17] Agarwal, R. P.; O’Regan, D., Multiple nonnegative solutions for second order impulsive differential equations, Appl. Math. Comput., 114, 51-59 (2000) · Zbl 1047.34008 [18] Lin, X. N.; Jiang, D. Q., Multiple positive solutions of Dirichlet boundary value problems for second order impulsive differential equations, J. Math. Anal. Appl., 321, 501-514 (2006) · Zbl 1103.34015 [19] Nieto, J. J.; O’Regan, D., Variational approach to impulsive differential equations, Nonlinear Anal. RWA, 10, 680-690 (2009) · Zbl 1167.34318 [20] Zhang, H.; Li, Z., Variational approach to impulsive differential equations with periodic boundary conditions, Nonlinear Anal. RWA, 11, 67-78 (2010) · Zbl 1186.34089 [21] Zhou, J.; Li, Y., Existence of solutions for a class of second-order Hamiltonian systems with impulsive effects, Nonlinear Anal. TMA, 72, 1594-1603 (2010) · Zbl 1193.34057 [22] Zhang, Z.; Yuan, R., An application of variational methods to Dirichlet boundary value problem with impulses, Nonlinear Anal. RWA, 11, 155-162 (2010) · Zbl 1191.34039 [23] Tian, Y.; Ge, W., Variational methods to Sturm-Liouville boundary value problem for impulsive differential equations, Nonlinear Anal. TMA, 72, 277-287 (2010) · Zbl 1191.34038 [24] Zhou, J.; Li, Y., Existence and multiplicity of solutions for some Dirichlet problems with impulsive effects, Nonlinear Anal. TMA, 71, 2856-2865 (2009) · Zbl 1175.34035 [25] Sun, J.; Chen, H.; Nieto, J. J.; Otero-Novoa, M., The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive effects, Nonlinear Anal., 72, 4575-4586 (2010) · Zbl 1198.34036 [26] Sun, J.; Chen, H.; Yang, L., Existence and multiplicity of solutions for impulsive differential equation with two parameters via variational method, Nonlinear Anal. (2010) [27] Sun, J.; Chen, H., Multiplicity of solutions for a class of impulsive differential equations with Dirichlet boundary conditions via variant fountain theorems, Nonlinear Anal. RWA (2010) · Zbl 1208.34031 [28] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0676.58017 [29] Zeidler, E., Nonlinear Functional Analysis and its Applications, vol. III (1985), Springer [30] Rabinowitz, P. H., (Minimax Methods in Critical Point Theory with Applications to Differential Equations. Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference Series in Mathematics, vol. 65 (1986), American Mathematical Society: American Mathematical Society Providence, RI) · Zbl 0609.58002 [31] Simon, J., Regularité de la solution d’une equation non lineaire dans \(R^n\), (Benilan, P.; Robert, J., Lecture Notes in Mathematics, vol. 665 (1978), Springer) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.