×

About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. (English) Zbl 1219.34102

Summary: This paper investigates the global stability and the global asymptotic stability independent of the sizes of the delays of linear time-varying Caputo fractional dynamic systems of real fractional order possessing internal point delays. The investigation is performed via fixed point theory in a complete metric space by defining appropriate nonexpansive or contractive self-mappings from initial conditions to points of the state-trajectory solution. The existence of a unique fixed point leading to a globally asymptotically stable equilibrium point is investigated, in particular, under easily testable sufficiency-type stability conditions. The study is performed for both the uncontrolled case and the controlled case under a wide class of state feedback laws.

MSC:

34K37 Functional-differential equations with fractional derivatives
34K06 Linear functional-differential equations
34K20 Stability theory of functional-differential equations
47N20 Applications of operator theory to differential and integral equations
34K35 Control problems for functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI arXiv EuDML

References:

[1] doi:10.1016/S0304-0208(06)80001-0 · doi:10.1016/S0304-0208(06)80001-0
[4] doi:10.1016/0898-1221(95)00031-S · Zbl 0824.44011 · doi:10.1016/0898-1221(95)00031-S
[5] doi:10.1007/BF02829688 · Zbl 1010.33005 · doi:10.1007/BF02829688
[7] doi:10.1016/S0022-247X(02)00048-3 · Zbl 1005.26002 · doi:10.1016/S0022-247X(02)00048-3
[8] doi:10.1016/j.jmaa.2009.04.012 · Zbl 1175.26004 · doi:10.1016/j.jmaa.2009.04.012
[9] doi:10.1090/S0002-9939-05-07949-9 · Zbl 1070.47043 · doi:10.1090/S0002-9939-05-07949-9
[10] doi:10.1016/j.amc.2010.05.080 · Zbl 1207.45014 · doi:10.1016/j.amc.2010.05.080
[11] doi:10.1103/PhysRevE.55.3581 · doi:10.1103/PhysRevE.55.3581
[13] doi:10.1063/1.3319559 · Zbl 1309.49003 · doi:10.1063/1.3319559
[14] doi:10.1023/B:NODY.0000017499.49855.14 · Zbl 1041.70503 · doi:10.1023/B:NODY.0000017499.49855.14
[15] doi:10.1016/S0893-9659(02)00062-9 · Zbl 1043.76056 · doi:10.1016/S0893-9659(02)00062-9
[16] doi:10.1016/j.amc.2010.03.060 · Zbl 1193.65168 · doi:10.1016/j.amc.2010.03.060
[17] doi:10.1016/S0165-1684(03)00183-X · Zbl 1145.94367 · doi:10.1016/S0165-1684(03)00183-X
[19] doi:10.1016/S0378-4371(00)00255-7 · doi:10.1016/S0378-4371(00)00255-7
[21] doi:10.1155/2010/639801 · Zbl 1191.26004 · doi:10.1155/2010/639801
[22] doi:10.1007/978-1-4020-6042-7 · Zbl 1116.00014 · doi:10.1007/978-1-4020-6042-7
[24] doi:10.1080/00207728308926464 · Zbl 0511.93023 · doi:10.1080/00207728308926464
[25] doi:10.1016/j.jmaa.2003.08.048 · Zbl 1046.34086 · doi:10.1016/j.jmaa.2003.08.048
[26] doi:10.1016/j.jmaa.2005.08.038 · Zbl 1111.93072 · doi:10.1016/j.jmaa.2005.08.038
[27] doi:10.1109/9.412644 · Zbl 0834.93045 · doi:10.1109/9.412644
[28] doi:10.1216/RMJ-2010-40-1-177 · Zbl 1193.93078 · doi:10.1216/RMJ-2010-40-1-177
[29] doi:10.1109/81.703845 · Zbl 0952.94025 · doi:10.1109/81.703845
[30] doi:10.1023/A:1012071600240 · Zbl 1005.93030 · doi:10.1023/A:1012071600240
[31] doi:10.1016/j.amc.2007.01.053 · Zbl 1117.93034 · doi:10.1016/j.amc.2007.01.053
[33] doi:10.1155/2007/39465 · Zbl 1155.54336 · doi:10.1155/2007/39465
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.