On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls. (English) Zbl 1219.34104

Summary: This paper discusses a generalized time-varying SEIR disease propagation model subject to delays which potentially involves mixed regular and impulsive vaccination rules. The model takes also into account the natural population growth and the mortality associated to the disease, and the potential presence of disease endemic thresholds for both the infected and infectious population dynamics as well as the loss of immunity of newborns. The presence of outsider infections is also considered. It is assumed that there is a finite number of time-varying distributed delays in the susceptible-infected coupling dynamics influencing the susceptible and infected differential equations. It is also assumed that there are time-varying point delays for the susceptible-infected coupled dynamics influencing the infected, infectious, and removed-by-immunity differential equations. The proposed regular vaccination control objective is the tracking of a prescribed suited infectious trajectory for a set of given initial conditions. The impulsive vaccination can be used to improve discrepancies between the SEIR model and a suitable reference one.


34K60 Qualitative investigation and simulation of models involving functional-differential equations
92D30 Epidemiology
92C60 Medical epidemiology
34D05 Asymptotic properties of solutions to ordinary differential equations
Full Text: DOI EuDML


[1] De La Sen M, Alonso-Quesada S: A control theory point of view on Beverton-Holt equation in population dynamics and some of its generalizations.Applied Mathematics and Computation 2008,199(2):464-481. 10.1016/j.amc.2007.10.021 · Zbl 1137.92034 · doi:10.1016/j.amc.2007.10.021
[2] De La Sen M, Alonso-Quesada S: Control issues for the Beverton-Holt equation in ecology by locally monitoring the environment carrying capacity: Non-adaptive and adaptive cases.Applied Mathematics and Computation 2009,215(7):2616-2633. 10.1016/j.amc.2009.09.003 · Zbl 1179.92069 · doi:10.1016/j.amc.2009.09.003
[3] De La Sen, M.; Alonso-Quesada, S., Model-matching-based control of the Beverton-Holt equation in ecology, 21 (2008) · Zbl 1149.92029
[4] De La Sen, M., About the properties of a modified generalized Beverton-Holt equation in ecology models, 23 (2008) · Zbl 1148.92031
[5] De La Sen M: The generalized Beverton-Holt equation and the control of populations.Applied Mathematical Modelling 2008,32(11):2312-2328. 10.1016/j.apm.2007.09.007 · Zbl 1156.39301 · doi:10.1016/j.apm.2007.09.007
[6] Mollison D (Ed): Epidemic Models: Their Structure and Relation to Data. Newton Institute, Cambridge University Press, New York, NY, USA; 1995. · Zbl 0831.00011
[7] Keeling MJ, Rohani P: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton, NJ, USA; 2008:xvi+368. · Zbl 1279.92038
[8] Yildirim A, Cherruault Y: Anaytical approximate solution of a SIR epidemic model with constant vaccination strategy by homotopy perturbation method.Kybernetes 2009,38(9):1566-1575. 10.1108/03684920910991540 · Zbl 1192.65115 · doi:10.1108/03684920910991540
[9] Erturk VS, Momani S: Solutions to the problem of prey and predator and the epidemic model via differential transform method.Kybernetes 2008,37(8):1180-1188. 10.1108/03684920810884973 · Zbl 1180.49041 · doi:10.1108/03684920810884973
[10] Ortega N, Barros LC, Massad E: Fuzzy gradual rules in epidemiology.Kybernetes 2003,32(3-4):460-477. 10.1108/03684920310463876 · Zbl 1040.92038 · doi:10.1108/03684920310463876
[11] Khan H, Mohapatra RN, Vajravelu K, Liao SJ: The explicit series solution of SIR and SIS epidemic models.Applied Mathematics and Computation 2009,215(2):653-669. 10.1016/j.amc.2009.05.051 · Zbl 1171.92033 · doi:10.1016/j.amc.2009.05.051
[12] Song X, Jiang Y, Wei Hg: Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time delays.Applied Mathematics and Computation 2009,214(2):381-390. 10.1016/j.amc.2009.04.005 · Zbl 1168.92326 · doi:10.1016/j.amc.2009.04.005
[13] Zhang T, Liu J, Teng Z: Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays.Applied Mathematics and Computation 2009,214(2):624-631. 10.1016/j.amc.2009.04.029 · Zbl 1168.92327 · doi:10.1016/j.amc.2009.04.029
[14] Mukhopadhyay B, Bhattacharyya R: Existence of epidemic waves in a disease transmission model with two-habitat population.International Journal of Systems Science 2007,38(9):699-707. 10.1080/00207720701596417 · Zbl 1160.93349 · doi:10.1080/00207720701596417
[15] Barreiro A, Baños A: Delay-dependent stability of reset systems.Automatica 2010,46(1):216-221. 10.1016/j.automatica.2009.10.029 · Zbl 1214.93072 · doi:10.1016/j.automatica.2009.10.029
[16] De La Sen M: On positivity of singular regular linear time-delay time-invariant systems subject to multiple internal and external incommensurate point delays.Applied Mathematics and Computation 2007,190(1):382-401. 10.1016/j.amc.2007.01.053 · Zbl 1117.93034 · doi:10.1016/j.amc.2007.01.053
[17] De La Sen M: Quadratic stability and stabilization of switched dynamic systems with uncommensurate internal point delays.Applied Mathematics and Computation 2007,185(1):508-526. 10.1016/j.amc.2006.07.048 · Zbl 1108.93062 · doi:10.1016/j.amc.2006.07.048
[18] Daley DJ, Gani J: Epidemic Modelling: An Introduction, Cambridge Studies in Mathematical Biology. Volume 15. Cambridge University Press, Cambridge, UK; 1999:xii+213. · Zbl 0922.92022 · doi:10.1017/CBO9780511608834
[19] Piccardi C, Lazzaris S: Vaccination policies for chaos reduction in childhood epidemics.IEEE Transactions on Biomedical Engineering 1998,45(5):591-595. 10.1109/10.668749 · doi:10.1109/10.668749
[20] Zhang T, Liu J, Teng Z: Dynamic behavior for a nonautonomous SIRS epidemic model with distributed delays.Applied Mathematics and Computation 2009,214(2):624-631. 10.1016/j.amc.2009.04.029 · Zbl 1168.92327 · doi:10.1016/j.amc.2009.04.029
[21] Gao S, Teng Z, Xie Dehui: The effects of pulse vaccination on SEIR model with two time delays.Applied Mathematics and Computation 2008,201(1-2):282-292. 10.1016/j.amc.2007.12.019 · Zbl 1143.92024 · doi:10.1016/j.amc.2007.12.019
[22] Khan QJA, Krishnan EV: An epidemic model with a time delay in transmission.Applications of Mathematics 2003,48(3):193-203. 10.1023/A:1026002429257 · Zbl 1099.92062 · doi:10.1023/A:1026002429257
[23] Boichuk, A.; Langerová, M.; Škoríková, J., Solutions of linear impulsive differential systems bounded on the entire real axis, 10 (2010) · Zbl 1204.34040
[24] Nieto, JJ; Tisdell, CC, On exact controllability of first-order impulsive differential equations, 9 (2010) · Zbl 1193.34125
[25] Yu HG, Zhong SM, Agarwal RP, Xiong LL: Species permanence and dynamical behavior analysis of an impulsively controlled ecological system with distributed time delay.Computers & Mathematics with Applications 2010,59(12):3824-3835. 10.1016/j.camwa.2010.04.018 · Zbl 1198.34171 · doi:10.1016/j.camwa.2010.04.018
[26] Marchenko VM, Zachkevich Z: Representation of solutions of control hybrid differential-difference impulse systems.Differential Equations 2009,45(12):1811-1822. 10.1134/S0012266109120118 · Zbl 1190.34100 · doi:10.1134/S0012266109120118
[27] Marchenko VM, Luazo ZZ: On the stability of hybrid differential-difference systems.Differential Equations 2009,45(12):1811-1822. 10.1134/S0012266109120118 · Zbl 1190.34100 · doi:10.1134/S0012266109120118
[28] De La Sen M: A method for general design of positive real functions.IEEE Transactions on Circuits and Systems. I. Fundamental Theory and Applications 1998,45(7):764-769. 10.1109/81.703845 · Zbl 0952.94025 · doi:10.1109/81.703845
[29] De La Sen M, Alonso-Quesada S: On vaccination control tools for a general SEIR-epidemic model.Proceedings of the 18th Mediterranean Conference on Control and Automation (MED ’10), 20101: 1322-1328. · doi:10.1109/MED.2010.5547865
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.