Lin, Aijing; Shang, Pengjian Minimizing periodic trends by applying Laplace transform. (English) Zbl 1219.37055 Fractals 19, No. 2, 203-211 (2011). Summary: Rescaled range analysis (R/S analysis), detrended fluctuation analysis (DFA) and detrended moving average (DMA) are widely-used methods for detection of long-range correlations in time series. Detrended cross-correlation analysis (DCCA) is a recently developed method to quantify the cross-correlations of two non-stationary time series. Another method for studying auto-correlations and cross-correlations was presented by Sergio Arianos and Anna Carbone in 2009. Recent studies have reported the susceptibility of this methods to periodic trends, which can result in spurious crossovers. In this paper, we propose the modified methods base on Laplace transform to minimizing the effect of periodic trends. The effectiveness of our techniques are demonstrated on stock data corrupted with periodic trends. Cited in 1 Document MSC: 37M10 Time series analysis of dynamical systems 44A10 Laplace transform Keywords:Laplace transform; rescaled range analysis (R/S analysis); detrended fluctuation analysis (DFA); detrended moving average (DMA); detrended cross-correlation analysis (DCCA); periodic trend; stock PDF BibTeX XML Cite \textit{A. Lin} and \textit{P. Shang}, Fractals 19, No. 2, 203--211 (2011; Zbl 1219.37055) Full Text: DOI References: [1] DOI: 10.1137/1010093 · Zbl 0179.47801 [2] DOI: 10.1029/WR005i002p00321 [3] DOI: 10.1007/978-1-4612-2150-0 [4] Hurst H. E., Trans. Am. Soc. Civ. Eng. 116 pp 770– [5] Hurst H. E., Long-Term Storage: An Experimental Study (1965) [6] Peters E., Fractal Market Analysis: Applying Chaos Theory to Investment and Economics (1994) [7] DOI: 10.1103/PhysRevE.49.1685 [8] DOI: 10.1016/j.chaos.2006.06.019 [9] Shang P. J., J. Phys. A 388 pp 720– [10] Kantelhardt J. W., J. Phys. A 295 pp 441– [11] Kantelhardt J. W., J. Phys. A 316 pp 87– [12] DOI: 10.1103/PhysRevE.64.011114 [13] DOI: 10.1103/PhysRevE.65.041107 [14] DOI: 10.1103/PhysRevE.71.011104 [15] Grau-Carles P., J. Phys. A 360 pp 89– · Zbl 1075.91031 [16] Nagarajan R., J. Phys. A 363 pp 226– [17] DOI: 10.1038/356168a0 [18] DOI: 10.1016/j.chaos.2005.01.036 · Zbl 1093.62506 [19] DOI: 10.1142/S021812740501279X [20] DOI: 10.1103/PhysRevE.71.051101 [21] Bashan A., J. Phys. A 387 pp 5080– [22] Nagarajan R., J. Phys. A 366 pp 530– [23] DOI: 10.1103/PhysRevE.69.026105 [24] Carbone A., J. Phys. A 344 pp 267– [25] Alvarez-Ramirez J., J. Phys. A 354 pp 199– [26] DOI: 10.1103/PhysRevLett.95.058101 [27] Staudacher M., J. Phys. A 349 pp 582– [28] DOI: 10.1007/s10867-007-9039-y [29] Chianca C. V., J. Phys. A 357 pp 447– [30] Nagarajan R., J. Phys. A 354 pp 182– [31] Podobnik B., J. Phys. A 387 pp 3954– [32] DOI: 10.1140/epjb/e2009-00310-5 [33] DOI: 10.1103/PhysRevLett.100.084102 [34] DOI: 10.1103/PhysRevE.77.066211 [35] DOI: 10.1007/s11071-009-9642-5 · Zbl 1204.90020 [36] Zebendea G. F., J. Phys. A 388 pp 4863– [37] DOI: 10.1016/j.physa.2010.06.025 [38] Arianos S., J. Stat. Mech. pp P03037– This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.