×

zbMATH — the first resource for mathematics

Wavelet approximation and Fourier widths of classes of periodic functions of several variables. I. (English. Russian original) Zbl 1219.42025
Proc. Steklov Inst. Math. 269, 2-24 (2010); translation from Trudy Mat. Inst. Steklova 269, 8-30 (2010).
Characterizations and special norm equivalences of function spaces \(B_{pq}^{sm} (I^{k}) \) and \(L_{pq}^{sm}(I^{k})\) of Nikol’skii-Besov and Lizorkin-Triebel types are studied, where \(I\) denotes the real numbers \({\mathbb R}\) or the torus. More exactly, wavelet expansions using Meyer wavelets are considered, and the equivalence of norms in these function spaces with discrete norms of sequences of wavelet coefficients is shown.
The author establishes order-sharp estimates for the approximation of functions in \(B_{pq}^{sm} (I^{k}) \) and \(L_{pq}^{sm}(I^{k})\) by special partial sums of these series in the metric \(L_{r}(I^{k})\) for a number of relations between the parameters \(s,p,q,r\), and \(m\), where \(s=(s_{1}, \dots , s_{n}) \in {\mathbb R}_{+}^{n}\), \(1 \leq p,q,r \leq \infty\), \(m= (m_{1}, \dots , m_{n}) \in {\mathbb N}^{n}\), and \(k=m_{1}+ \dots + m_{n}\). In the periodic case, the Fourier widths of these function classes are studied.

MSC:
42C40 Nontrigonometric harmonic analysis involving wavelets and other special systems
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
42C15 General harmonic expansions, frames
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] S. M. Nikol’skii, Approximation of Functions of Several Variables and Imbedding Theorems, 2nd ed. (Nauka, Moscow, 1977) [in Russian].
[2] O. V. Besov, V. P. Il’in, and S. M. Nikol’skii, Integral Representations of Functions and Imbedding Theorems, 2nd ed. (Nauka, Moscow, 1996) [in Russian].
[3] H. Triebel, Theory of Function Spaces (Birkhäuser, Basel, 1983; Mir, Moscow, 1986).
[4] H.-J. Schmeisser and H. Triebel, Topics in Fourier Analysis and Function Spaces (J. Wiley & Sons, Chichester, 1987). · Zbl 0661.46024
[5] T. I. Amanov, Spaces of Differentiable Functions with Dominating Mixed Derivative (Nauka, Alma-Ata, 1976) [in Russian].
[6] V. N. Temlyakov, Approximation of Functions with a Bounded Mixed Derivative (Nauka, Moscow, 1986), Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 178 [Proc. Steklov Inst. Math. 178 (1989)].
[7] V. N. Temlyakov, Approximation of Periodic Functions (Nova Sci. Publ., Commack, NY, 1993). · Zbl 0899.41001
[8] H.-J. Schmeisser, ”On Spaces of Functions and Distributions with Mixed Smoothness Properties of Besov-Triebel-Lizorkin Type. I, II,” Math. Nachr. 98, 233–250 (1980); 106, 187–200 (1982). · Zbl 0473.46021 · doi:10.1002/mana.19800980118
[9] M. Yamazaki, ”Boundedness of Product Type Pseudodifferential Operators on Spaces of Besov Type,” Math. Nachr. 133, 297–315 (1987). · Zbl 0638.35090 · doi:10.1002/mana.19871330120
[10] H.-J. Schmeisser, ”Recent Developments in the Theory of Function Spaces with Dominating Mixed Smoothness,” in Nonlinear Analysis, Function Spaces and Applications: Proc. Spring School, Prague, May 30–June 6, 2006 (Czech Acad. Sci., Math. Inst., Prague, 2007), Vol. 8, pp. 145–204. · Zbl 1289.46056
[11] D. B. Bazarkhanov, ”Characterizations of the Nikol’skii-Besov and Lizorkin-Triebel Function Spaces of Mixed Smoothness,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 243, 53–65 (2003) [Proc. Steklov Inst. Math. 243, 46–58 (2003)]. · Zbl 1090.46025
[12] D. B. Bazarkhanov, ”-Transform Characterization of the Nikol’skii-Besov and Lizorkin-Triebel Function Spaces with Mixed Smoothness,” East J. Approx. 10(1–2), 119–131 (2004). · Zbl 1113.46025
[13] D. B. Bazarkhanov, ”Equivalent (Quasi)norms for Certain Function Spaces of Generalized Mixed Smoothness,” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 248, 26–39 (2005) [Proc. Steklov Inst. Math. 248, 21–34 (2005)]. · Zbl 1129.46023
[14] D. B. Bazarkhanov, ”Different Representations and Equivalent Norms for Nikol’skii-Besov and Lizorkin-Triebel Spaces of Generalized Mixed Smoothness,” Dokl. Akad. Nauk 402(3), 298–302 (2005) [Dokl. Math. 71 (3), 373–377 (2005)]. · Zbl 1272.46021
[15] J. Vybiral, Function Spaces with Dominating Mixed Smoothness (Inst. Math., Pol. Acad. Sci., Warszawa, 2006), Diss. Math. 436. · Zbl 1101.46023
[16] M. Hansen and J. Vybiral, ”The Jawerth-Franke Embedding of Spaces with Dominating Mixed Smoothness,” Georgian Math. J. 16(4), 667–682 (2009). · Zbl 1187.42022
[17] Y. Meyer, Wavelets and Operators (Cambridge Univ. Press, Cambridge, 1992), Cambridge Stud. Adv. Math. 37.
[18] B. S. Kashin and A. A. Saakyan, Orthogonal Series, 2nd ed. (AFTs, Moscow, 1999) [in Russian]. · Zbl 1188.42010
[19] P. Wojtaszczyk, A Mathematical Introduction to Wavelets (Cambridge Univ. Press, Cambridge, 1997). · Zbl 0865.42026
[20] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton Univ. Press, Princeton, NJ, 1971; Mir, Moscow, 1974). · Zbl 0232.42007
[21] E. Hernández and G. Weiss, A First Course on Wavelets (CRC Press, Boca Raton, FL, 1996), Stud. Adv. Math. · Zbl 0885.42018
[22] H. Triebel, Theory of Function Spaces. III (Birkhäuser, Basel, 2006).
[23] C. Fefferman and E. M. Stein, ”Some Maximal Inequalities,” Am. J. Math. 93, 107–115 (1971). · Zbl 0222.26019 · doi:10.2307/2373450
[24] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals (Princeton Univ. Press, Princeton, NJ, 1993). · Zbl 0821.42001
[25] R. A. DeVore, S. V. Konyagin, and V. N. Temlyakov, ”Hyperbolic Wavelet Approximation,” Constr. Approx. 14(1), 1–26 (1998). · Zbl 0895.41016 · doi:10.1007/s003659900060
[26] H. Wang, ”Representation and Approximation of Multivariate Functions with Mixed Smoothness by Hyperbolic Wavelets,” J. Math. Anal. Appl. 291, 698–715 (2004). · Zbl 1055.42023 · doi:10.1016/j.jmaa.2003.11.023
[27] P. I. Lizorkin, ”On Bases and Multipliers in the Spaces B r p,\(\theta\) (\(\Gamma\)),” Tr. Mat. Inst. im. V.A. Steklova, Akad. Nauk SSSR 143, 88–104 (1977) [Proc. Steklov Inst. Math. 143, 93–110 (1980)].
[28] D. G. Orlovskiĭ, ”On Multipliers in the Space B p,\(\theta\) r ,” Anal. Math. 5, 207–218 (1979). · Zbl 0461.42008 · doi:10.1007/BF01908904
[29] H.-J. Schmeisser, ”An Unconditional Basis in Periodic Spaces with Dominating Mixed Smoothness Properties,” Anal. Math. 13, 153–168 (1987). · Zbl 0634.46006 · doi:10.1007/BF02202573
[30] Dinh Dũng, ”Stability in Periodic Multi-wavelet Decompositions and Recovery of Functions,” East J. Approx. 11(4), 447–479 (2005). · Zbl 1143.42309
[31] A. V. Andrianov and V. N. Temlyakov, ”On Two Methods of Generalization of Properties of Univariate Function Systems to Their Tensor Product,” Tr. Mat. Inst. im. V.A. Steklova, Ross. Akad. Nauk 219, 32–43 (1997) [Proc. Steklov Inst. Math. 219, 25–35 (1997)]. · Zbl 0924.41012
[32] É. M. Galeev, ”Approximation of Classes of Periodic Functions of Several Variables by Nuclear Operators,” Mat. Zametki 47(3), 32–41 (1990) [Math. Notes 47, 248–254 (1990)]. · Zbl 0723.41018
[33] É. M. Galeev, ”Widths of the Besov Classes B p,\(\theta\) r ( · doi:10.4213/mzm529
[34] A. S. Romanyuk, ”Best Approximations and Widths of Classes of Periodic Functions of Several Variables,” Mat. Sb. 199(2), 93–114 (2008) [Sb. Math. 199, 253–275 (2008)]. · Zbl 1173.41012 · doi:10.4213/sm3685
[35] H.-J. Schmeisser and W. Sickel, ”Spaces of Functions of Mixed Smoothness and Approximation from Hyperbolic Crosses,” J. Approx. Theory 128, 115–150 (2004). · Zbl 1045.41009 · doi:10.1016/j.jat.2004.04.007
[36] T. Ullrich, ”Smolyak’s Algorithm, Sampling on Sparse Grids and Sobolev Spaces of Functions of Dominating Mixed Smoothness,” East J. Approx. 14, 1–38 (2008). · Zbl 1217.41021
[37] D. B. Bazarkhanov, ”Estimates of the Fourier Widths of Classes of Nikol’skii-Besov and Lizorkin-Triebel Types of Periodic Functions of Several Variables,” Mat. Zametki 87(2), 305–308 (2010) [Math. Notes 87, 281–284 (2010)]. · Zbl 1203.42032 · doi:10.4213/mzm8592
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.