Sung, Soo Hak Convergence of moving average processes for dependent random variables. (English) Zbl 1219.60034 Commun. Stat., Theory Methods 40, No. 13, 2366-2376 (2011). Summary: Let \(\{Y _{ i }, - \infty <i < \infty \}\) be a doubly infinite sequence of identically distributed random variables with \(E|Y _{1}| < \infty \), and \(\{a _{ i }, - \infty <i < \infty \}\) be an absolutely summable sequence of real numbers. Under dependence conditions on \(\{Y _{i}\}\), complete convergence and complete moment convergence of moving average process of the form \(X_k = \Sigma^\infty_{i=-\infty} a_{i+k} Y_i\) have been established by many authors. In this article, we give a general method for obtaining the complete moment convergence of the moving average process. Our result extends previous many results from dependent random variables to random variables satisfying some suitable conditions. Cited in 5 Documents MSC: 60F15 Strong limit theorems 62G05 Nonparametric estimation Keywords:complete convergence; complete moment convergence; dependent random variables; moving average process PDF BibTeX XML Cite \textit{S. H. Sung}, Commun. Stat., Theory Methods 40, No. 13, 2366--2376 (2011; Zbl 1219.60034) Full Text: DOI References: [1] DOI: 10.1080/03610928108828102 [2] Asadian N., J. Iranian Stat. Soc. 5 pp 69– (2006) [3] DOI: 10.1111/1467-842X.00287 · Zbl 1082.60028 [4] DOI: 10.1090/S0002-9939-1993-1149969-7 [5] Budsaba K., Thail. Statist. 5 pp 69– (2007) [6] Budsaba K., Lobachevskii J. Math. 26 pp 17– (2007) [7] DOI: 10.1016/0167-7152(90)90031-2 · Zbl 0699.60016 [8] Chen P., Theor. Probab. Math. Statist. 77 pp 165– (2008) [9] DOI: 10.1016/j.spl.2008.07.026 · Zbl 1154.60026 [10] DOI: 10.1080/03610928108828041 [11] DOI: 10.1137/1107036 · Zbl 0119.14204 [12] DOI: 10.1214/aos/1176346079 · Zbl 0508.62041 [13] Kim H. C., Kor. Ann. Math. 25 pp 7– (2008) [14] DOI: 10.1016/j.spl.2007.09.009 · Zbl 1140.60315 [15] DOI: 10.4134/JKMS.2008.45.2.355 · Zbl 1152.60029 [16] DOI: 10.4134/CKMS.2008.23.4.597 · Zbl 1168.60346 [17] DOI: 10.1214/aoms/1177699260 · Zbl 0146.40601 [18] DOI: 10.1016/0167-7152(92)90073-E · Zbl 0756.60031 [19] DOI: 10.1016/j.spl.2004.08.011 · Zbl 1067.60076 [20] Liang H. Y., Ind. J. Pure. Appl. Math. 34 pp 461– (2003) [21] Shao Q. M., Acta Math. Sinica 31 pp 736– (1988) [22] DOI: 10.1016/j.spl.2009.03.001 · Zbl 1168.60337 [23] DOI: 10.1023/A:1022278404634 · Zbl 1012.60022 [24] DOI: 10.1007/s10114-005-0601-x · Zbl 1102.60023 [25] DOI: 10.1016/0167-7152(95)00215-4 · Zbl 0873.60019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.