×

Test martingales, Bayes factors and \(p\)-values. (English) Zbl 1219.62050

Summary: A nonnegative martingale with initial value equal to one measures evidence against a probabilistic hypothesis. The inverse of its value at some stopping time can be interpreted as a Bayes factor. If we exaggerate the evidence by considering the largest value attained so far by such a martingale, the exaggeration will be limited, and there are systematic ways to eliminate it. The inverse of the exaggerated value at some stopping time can be interpreted as a \(p\)-value. We give a simple characterization of all increasing functions that eliminate the exaggeration.

MSC:

62F15 Bayesian inference
60G44 Martingales with continuous parameter
62F03 Parametric hypothesis testing
65C60 Computational problems in statistics (MSC2010)

Software:

R
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Aalen, O., Andersen, P. K., Borgan, Ø., Gill, R. and Keiding, N. (2009). History of applications of martingales in survival analysis. Electronic J. History Probab. Statist. 5 . Available at . · Zbl 1170.01364
[2] Abramowitz, M. and Stegun, I. A., eds. (1964). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables . US Government Printing Office, Washington, DC. · Zbl 0171.38503
[3] Aldrich, J. P -value and prob-value. Earliest Known Uses of Some of the Words of Mathematics . Available at .
[4] Anscombe, F. J. (1954). Fixed-sample-size analysis of sequential observations. Biometrics 10 89-100. · Zbl 0058.12902
[5] Apostol, T. M. (1999). An elementary view of Euler’s summation formula. Amer. Math. Monthly 106 409-418. JSTOR: · Zbl 1076.41509
[6] Armitage, P. (1961). Discussion of “Consistency in statistical inference and decision,” by C. A. B. Smith. J. Roy. Statist. Soc. Ser. B 23 30-31. JSTOR:
[7] Bernardo, J. M. and Smith, A. F. M. (2000). Bayesian Theory . Wiley, Chichester. · Zbl 0943.62009
[8] Bienvenu, L., Shafer, G. and Shen, A. (2009). On the history of martingales in the study of randomness. Electronic J. History Probab. Statist. 5 . Available at . · Zbl 1170.01366
[9] Bru, B., Bru, M.-F. and Chung, K. L. (2009). Borel and the St. Petersburg martingale. Electronic J. History Probab. Statist. 5 . Available at . · Zbl 1170.01367
[10] Cox, D. R. (2006). Principles of Statistical Inference . Cambridge Univ. Press, Cambridge. · Zbl 1102.62002
[11] Dawid, A. P. (1984). Statistical theory: The prequential approach. J. Roy. Statist. Soc. Ser. A 147 278-292. JSTOR: · Zbl 0557.62080
[12] Dawid, A. P., de Rooij, S., Shafer, G., Shen, A., Vereshchagin, N. and Vovk, V. (2011). Insuring against loss of evidence in game-theoretic probability. Statist. Probab. Lett. 81 157-162. · Zbl 1206.62004
[13] Dellacherie, C. and Meyer, P.-A. (1982). Probabilities and Potential B: Theory of Martingales . North-Holland, Amsterdam. · Zbl 0494.60002
[14] Dempster, A. P. (1969). Elements of Continuous Multivariate Analysis . Addison-Wesley, Reading, MA. · Zbl 0197.44904
[15] Edwards, W., Lindman, H. and Savage, L. J. (1963). Bayesian statistical inference for psychological research. Psychological Review 70 193-242. · Zbl 0173.22004
[16] Fisher, R. A. (1925). Statistical Methods for Research Workers . Oliver and Boyd, Edinburgh. · JFM 51.0414.08
[17] Hipp, C. and Mattner, L. (2007). On the normal approximation to symmetric binomial distributions. Teor. Veroyatn. Primen. 52 610-617. · Zbl 1149.60016
[18] Itô, K. and Watanabe, S. (1965). Transformation of Markov processes by multiplicative functionals. Ann. l’Inst. Fourier 15 15-30. · Zbl 0141.15103
[19] Johnson, G. and Helms, L. L. (1963). Class D supermartingales. Bull. Amer. Math. Soc. 69 59-62. · Zbl 0133.40402
[20] Kass, R. E. and Raftery, A. E. (1995). Bayes factors. J. Amer. Statist. Assoc. 90 773-795. · Zbl 0846.62028
[21] Lai, T. L. (2009). Martingales in sequential analysis and time series, 1945-1985. Electronic J. History Probab. Statist. 5 . Available at . · Zbl 1170.01372
[22] Laplace, P. S. (1774). Mémoire sur la probabilité des causes par les évènemens. Savants étranges 6 621-656. English translation (1986): Memoir on the probability of the causes of events. Statist. Sci. 1 364-378.
[23] Lehmann, E. L. (2006). Nonparametrics: Statistical Methods Based on Ranks , revised 1st ed. Springer, New York.
[24] Lévy, P. (1937). Théorie de l’addition des variables aléatoires . Gauthier-Villars, Paris. · Zbl 0016.17003
[25] Li, M. and Vitányi, P. (2008). An Introduction to Kolmogorov Complexity and Its Applications , 3rd ed. Springer, New York. · Zbl 1185.68369
[26] Locker, B. (2009). Doob at Lyon. Electronic J. History Probab. Statist. 5 . Available at . · Zbl 1170.01373
[27] Martin-Löf, P. (1966). Algorithmen und zufällige Folgen. Vier Vorträge von Per Martin-Löf (Stockholm) gehalten am Mathematischen Institut der Universität Erlangen-Nürnberg, Erlangen. This document, dated 16 April 1966, consists of notes taken by K. Jacobs and W. Müller from lectures by Martin-Löf at Erlangen on April 5, 6, 14, and 15. There are copies in several university libraries in Germany and the United States. Available at .
[28] Martin-Löf, P. (1969). The literature on von Mises’ Kollektivs revisited. Theoria 35 12-37. · Zbl 0198.23103
[29] Medvegyev, P. (2007). Stochastic Integration Theory . Oxford Univ. Press, Oxford. · Zbl 1153.60002
[30] Meyer, P. A. (1966). Probability and Potentials . Blaisdell, Waltham, MA. · Zbl 0138.10401
[31] Neyman, J. and Pearson, E. (1933). On the problem of the most efficient tests of statistical hypotheses. Philos. Trans. Roy. Soc. London Ser. A 231 289-337. · Zbl 0006.26804
[32] Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Magazine 50 157-175. · JFM 31.0238.04
[33] R Development Core Team (2010). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
[34] Schnorr, C.-P. (1971). Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische Begründung der Wahrscheinlichkeitstheorie . Springer, Berlin. · Zbl 0232.60001
[35] Sellke, T., Bayarri, M. J. and Berger, J. (2001). Calibration of p -values for testing precise null hypotheses. Amer. Statist. 55 62-71. JSTOR: · Zbl 1182.62053
[36] Shafer, G. (2006). From Cournot’s principle to market efficiency. The Game-Theoretic Probability and Finance project, Working Paper 15. Available at .
[37] Stigler, S. M. (1986). Laplace’s 1774 memoir on inverse probability. Statist. Sci. 1 359-363. · Zbl 0618.62002
[38] Todhunter, I. (1865). A History of the Mathematical Theory of Probability from the Time of Pascal to that of Laplace . Macmillan, London.
[39] Ville, J. (1939). Etude critique de la notion de collectif . Gauthier-Villars, Paris. · Zbl 0021.14601
[40] Vovk, V. (1987). The law of the iterated logarithm for random Kolmogorov, or chaotic, sequences. Theory Probab. Appl. 32 413-425. Russian original: \?\?\?\?\? \?\?\?\?\?\?\?\?\?\? \?\?\?\?\?\?\?\?\? \?\?\? \?\?\?\?\?\?\?\?\? \?\? \?\?\?\?\?\?\?\?\?\?\?, \?\?\? \?\?\?\?\?\?\?\?\?\?\?, \?\?\?\?\?\?\?\?\?\?\?\?\?\?\?\?\?\?\?. \?\?\?\?\?\? \?\?\?\?\?\?\?\?\?\?\?\? \? \?\? \?\?\?\?\?\?\?\?\?\? 32 456-468. · Zbl 0645.60006
[41] Vovk, V. (1993). A logic of probability, with application to the foundations of statistics (with discussion). J. Roy. Statist. Soc. Ser. B 55 317-351. JSTOR: · Zbl 0806.62004
[42] Vovk, V., Gammerman, A. and Shafer, G. (2005). Algorithmic Learning in a Random World . Springer, New York. · Zbl 1105.68052
[43] Wagenmakers, E.-J. (2007). A practical solution to the pervasive problems of p -values. Psychon. Bull. Rev. 14 779-804.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.