zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A variational principle for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity. (English) Zbl 1219.65146
Summary: Via He’s semi-inverse method, a variational principle is established for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity. The result includes previously known ones as special cases.

65N99Numerical methods for BVP of PDE
35Q55NLS-like (nonlinear Schrödinger) equations
35A15Variational methods (PDE)
Full Text: DOI
[1] Hasimoto, H.; Ono, H.: Nonlinear modulation of gravity waves, J. phys. Soc. Japan 33, 805-811 (1972)
[2] Johnson, R. S.: On the modulation of water waves in the neighbourhood of kh$\approx 1$.363, Proc. R. Soc. A 357, 131-141 (1977) · Zbl 0375.76017 · doi:10.1098/rspa.1977.0159
[3] He, J. H.: Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos solitons fractals 19, No. 4, 847-851 (2004) · Zbl 1135.35303 · doi:10.1016/S0960-0779(03)00265-0
[4] Ambrosetti, A.; Colorado, E.: Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math. 342, No. 7, 453-458 (2006) · Zbl 1094.35112 · doi:10.1016/j.crma.2006.01.024
[5] Xu, L.: Variational principles for coupled nonlinear Schrödinger equations, Phys. lett. A 359, 627-629 (2007) · Zbl 1236.35175
[6] Yao, L.; Chang, J. R.: Variational principles for nonlinear Schrödinger equation with high nonlinearity, J. nonlinear sci. Appl. 1, No. 1, 1-4 (2008) · Zbl 1161.58307 · emis:journals/TJNSA/no1.htm
[7] Ozis, T.; Yildirim, A.: Application of he’s semi-inverse method to the nonlinear Schrödinger equation, Comput. math. Appl. 54, No. 7--8, 1039-1042 (2007) · Zbl 1157.65465 · doi:10.1016/j.camwa.2006.12.047
[8] Sweilam, N. H.; Al-Bar, R. F.: Variation iteration method for coupled nonlinear Schrödinger equation, Comput. math. Appl. 54, No. 7--8, 993-999 (2007) · Zbl 1141.65387 · doi:10.1016/j.camwa.2006.12.068
[9] Das, S.; Gupta, P. K.; Barat, S.: A note on fractional Schrödinger equation, Nonlinear sci. Lett. A 1, No. 1, 91-94 (2010)
[10] Kavitha, L.; Srividya, B.; Akila, N.; Gopi, D.: Shape changing solitary solutions of a nonlocally damped nonlinear Schrödinger equation using symbolic computation, Nonlinear sci. Lett. A 1, No. 1, 95-107 (2010)
[11] Yang, C. D.; Han, S. Y.: Invariant eigen-structure in complex-valued quantum mechanics, Int. J. Nonlinear sci. Numer. 10, 407-423 (2009)
[12] Yang, C. D.: Complex mechanics, Progr. nonlinear sci. 1, 1-383 (2010)
[13] He, J. H.: Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo jet eng. 14, No. 1, 23-28 (1997)
[14] He, J. H.: Variational approach to (2+1)-dimensional dispersive long water equations, Phys. lett. A 335, No. 2--3, 182-184 (2005) · Zbl 1123.37319 · doi:10.1016/j.physleta.2004.12.019
[15] He, J. H.: Variational principle for variable coefficients KdV equation, Phys. lett. A 358, No. 2, 91-93 (2006) · Zbl 1142.35583 · doi:10.1016/j.physleta.2006.05.010
[16] Zhou, X. W.: Variational approach to the Broer--Kaup--kupershmidt equation, Phys. lett. A 363, 108-109 (2007) · Zbl 1197.65116 · doi:10.1016/j.physleta.2006.10.083
[17] Zheng, C. B.; Liu, B.; Wang, Z. J.: Generalized variational principle for electromagnetic field with magnetic monopoles by he’s semi-inverse method, Int. J. Nonlinear sci. Numer. 10, 1369-1372 (2009)
[18] Zheng, C. B.; Liu, B.; Wang, Z. J.: Variational principle for nonlinear magneto-electro-elastodynamics with finite displacement by he’s semi-inverse method, Int. J. Nonlinear sci. Numer. 10, 1523-1526 (2009)
[19] He, J. H.: Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern phys. B 20, No. 10, 1141-1199 (2006) · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[20] J.H. He, Non-perturbative methods for strongly nonlinear problems, Dissertation, de-Verlag im Internet GmbH, Berlin, 2006.
[21] Wu, Y.: Variational approach to the generalized Zakharov equations, Int. J. Nonlinear sci. Numer. 10, 1245-1247 (2009)
[22] Pak, S.: Solitary wave solutions for the RLW equation by he’s semi inverse method, Int. J. Nonlinear sci. Numer. 10, 505-508 (2009)
[23] He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations, Chaos solitons fractals 30, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[24] H. (Benn) Wu, X.; He, J. H.: Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method, Comput. math. Appl. 54, No. 7--8, 966-986 (2007) · Zbl 1143.35360 · doi:10.1016/j.camwa.2006.12.041
[25] Zhou, X. W.: Exp-function method for solving Huxley equation, Math. probl. Eng. 2008 (2008) · Zbl 1151.92007 · doi:10.1155/2008/538489
[26] Zhou, X. W.; Wen, Y. X.; He, J. H.: Exp-function method to solve the nonlinear dispersive $K(m,n)$ equations, Int. J. Nonlinear sci. Numer. 9, No. 3, 301-306 (2008)
[27] Liu, W. J.: New solitary wave solution for the Boussinesq wave equation using the semi-inverse method and the exp-function method, Z. naturforsch. A 64, 709-712 (2009)