×

A variational principle for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity. (English) Zbl 1219.65146

Summary: Via He’s semi-inverse method, a variational principle is established for coupled nonlinear Schrödinger equations with variable coefficients and high nonlinearity. The result includes previously known ones as special cases.

MSC:

65N99 Numerical methods for partial differential equations, boundary value problems
35Q55 NLS equations (nonlinear Schrödinger equations)
35A15 Variational methods applied to PDEs
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hasimoto, H.; Ono, H., Nonlinear modulation of gravity waves, J. Phys. Soc. Japan, 33, 805-811 (1972)
[2] Johnson, R. S., On the modulation of water waves in the neighbourhood of \(k h \approx 1.363\), Proc. R. Soc. A, 357, 131-141 (1977) · Zbl 0375.76017
[3] He, J. H., Variational principles for some nonlinear partial differential equations with variable coefficients, Chaos Solitons Fractals, 19, 4, 847-851 (2004) · Zbl 1135.35303
[4] Ambrosetti, A.; Colorado, E., Bound and ground states of coupled nonlinear Schrödinger equations, C. R. Math., 342, 7, 453-458 (2006) · Zbl 1094.35112
[5] Xu, L., Variational principles for coupled nonlinear Schrödinger equations, Phys. Lett. A, 359, 627-629 (2007) · Zbl 1236.35175
[6] Yao, L.; Chang, J. R., Variational principles for nonlinear Schrödinger equation with high nonlinearity, J. Nonlinear Sci. Appl., 1, 1, 1-4 (2008) · Zbl 1161.58307
[7] Ozis, T.; Yildirim, A., Application of He’s semi-inverse method to the nonlinear Schrödinger equation, Comput. Math. Appl., 54, 7-8, 1039-1042 (2007) · Zbl 1157.65465
[8] Sweilam, N. H.; Al-Bar, R. F., Variation iteration method for coupled nonlinear Schrödinger equation, Comput. Math. Appl., 54, 7-8, 993-999 (2007) · Zbl 1141.65387
[9] Das, S.; Gupta, P. K.; Barat, S., A note on fractional Schrödinger equation, Nonlinear Sci. Lett. A, 1, 1, 91-94 (2010)
[10] Kavitha, L.; Srividya, B.; Akila, N.; Gopi, D., Shape changing solitary solutions of a nonlocally damped nonlinear Schrödinger equation using symbolic computation, Nonlinear Sci. Lett. A, 1, 1, 95-107 (2010)
[11] Yang, C. D.; Han, S. Y., Invariant eigen-structure in complex-valued quantum mechanics, Int. J. Nonlinear Sci. Numer., 10, 407-423 (2009)
[12] Yang, C. D., Complex mechanics, Progr. Nonlinear Sci., 1, 1-383 (2010)
[13] He, J. H., Semi-inverse method of establishing generalized variational principles for fluid mechanics with emphasis on turbomachinery aerodynamics, Int. J. Turbo Jet Eng., 14, 1, 23-28 (1997)
[14] He, J. H., Variational approach to (2+1)-dimensional dispersive long water equations, Phys. Lett. A, 335, 2-3, 182-184 (2005) · Zbl 1123.37319
[15] He, J. H., Variational principle for variable coefficients KdV equation, Phys. Lett. A, 358, 2, 91-93 (2006) · Zbl 1142.35583
[16] Zhou, X. W., Variational approach to the Broer-Kaup-Kupershmidt equation, Phys. Lett. A, 363, 108-109 (2007) · Zbl 1197.65116
[17] Zheng, C. B.; Liu, B.; Wang, Z. J., Generalized variational principle for electromagnetic field with magnetic monopoles by He’s semi-inverse method, Int. J. Nonlinear Sci. Numer., 10, 1369-1372 (2009)
[18] Zheng, C. B.; Liu, B.; Wang, Z. J., Variational principle for nonlinear magneto-electro-elastodynamics with finite displacement by He’s semi-inverse method, Int. J. Nonlinear Sci. Numer., 10, 1523-1526 (2009)
[19] He, J. H., Some asymptotic methods for strongly nonlinear equations, Internat. J. Modern Phys. B, 20, 10, 1141-1199 (2006) · Zbl 1102.34039
[21] Wu, Y., Variational approach to the generalized Zakharov equations, Int. J. Nonlinear Sci. Numer., 10, 1245-1247 (2009)
[22] Pak, S., Solitary wave solutions for the RLW equation by He’s semi inverse method, Int. J. Nonlinear Sci. Numer., 10, 505-508 (2009)
[23] He, J. H.; Wu, X. H., Exp-function method for nonlinear wave equations, Chaos Solitons Fractals, 30, 700-708 (2006) · Zbl 1141.35448
[24] Wu, X. H. (Benn); He, J. H., Solitary solutions, periodic solutions and compacton-like solutions using the exp-function method, Comput. Math. Appl., 54, 7-8, 966-986 (2007) · Zbl 1143.35360
[25] Zhou, X. W., Exp-function method for solving Huxley equation, Math. Probl. Eng., 2008 (2008), Article ID 538489 · Zbl 1151.92007
[26] Zhou, X. W.; Wen, Y. X.; He, J. H., Exp-function method to solve the nonlinear dispersive \(K(m, n)\) equations, Int. J. Nonlinear Sci. Numer., 9, 3, 301-306 (2008)
[27] Liu, W. J., New solitary wave solution for the Boussinesq wave equation using the semi-inverse method and the exp-function method, Z. Naturforsch. A, 64, 709-712 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.