Bougoffa, Lazhar; Rach, Randolph C.; Mennouni, Abdelaziz An approximate method for solving a class of weakly-singular Volterra integro-differential equations. (English) Zbl 1219.65159 Appl. Math. Comput. 217, No. 22, 8907-8913 (2011). Summary: We present a new approach to resolve linear and nonlinear weakly-singular Volterra integro-differential equations of first- or second-order by first removing the singularity using Taylor’s approximation and then transforming the given first- or second-order integro-differential equations into an ordinary differential equation such as the well-known Legendre, degenerate hypergeometric, Euler or Abel equations in such a manner that Adomian’s asymptotic decomposition method can be applied, which permits convenient resolution of these equations. Some examples with closed-form solutions are studied in detail to further illustrate the proposed technique, and the results obtained demonstrate this approach is indeed practical and efficient. Cited in 10 Documents MSC: 65R20 Numerical methods for integral equations 45J05 Integro-ordinary differential equations 45A05 Linear integral equations 45G05 Singular nonlinear integral equations 45E10 Integral equations of the convolution type (Abel, Picard, Toeplitz and Wiener-Hopf type) Keywords:linear and nonlinear weakly-singular Volterra integro-differential equations; Taylor’s approximation; asymptotic decomposition method; numerical examples PDF BibTeX XML Cite \textit{L. Bougoffa} et al., Appl. Math. Comput. 217, No. 22, 8907--8913 (2011; Zbl 1219.65159) Full Text: DOI References: [1] Agarwal, R. P., Boundary value problems for higher order integro-differential equations, Nonlinear Anal., 7, 259-270 (1983) · Zbl 0505.45002 [2] Morchalo, J., On two point boundary value problem for integro-differential equation of second order, Fasc. Math., 9, 51-56 (1975) · Zbl 0363.45005 [3] Wazwaz, A. M., A reliable algorithm for solving boundary value problems for higher-order integro-differential equations, Appl. Math. Comput., 118, 327-342 (2001) · Zbl 1023.65150 [4] Babolian, E.; Shamloo, A. S., Numerical solution of Volterra integral and integro-differential equations of convolution type by using operational matrices of piecewise constant orthogonal functions, J. Comput. Appl. Math., 214, 495-508 (2008) · Zbl 1135.65043 [5] Brunner, H., On the numerical solution of nonlinear Volterra integro-differential equations, BIT, 13, 381-390 (1973) · Zbl 0265.65056 [6] Contea, D.; Preteb, I., Fast collocation methods for Volterra integral equations of convolution type, J. Comput. Appl. Math., 196, 652-663 (2006) [7] Brunner, H., On the numerical solution of nonlinear Fredholm integral equations by collocation methods, SIAM J. Numer. Anal., 27, 987-1000 (1990) · Zbl 0702.65104 [8] Ghasemi, M.; Kajani, M.; Babolian, E., Application of He’s homotopy perturbation method to nonlinear integro-differential equation, Appl. Math. Comput., 188, 538-548 (2007) · Zbl 1118.65394 [9] Saberi-Nadja, J.; Ghorbani, A., He’s homotopy perturbation method: an effective tool for solving non-linear integral and integro-differential equations, Comput. Math. Appl., 58, 2379-2390 (2009) · Zbl 1189.65173 [10] Lepik, O., Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput., 176, 324-333 (2006) · Zbl 1093.65123 [11] Mahmoudi, Y., Wavelet Galerkin method for numerical solution of nonlinear integral equation, Appl. Math. Comput., 167, 1119-1129 (2005) · Zbl 1082.65596 [12] Ebadi, G.; Rahimi-Ardabili, M.; Shahmorad, S., Numerical solution of the nonlinear Volterra integro-differential equations by the Tau method, Appl. Math. Comput., 188, 1580-1586 (2007) · Zbl 1119.65123 [13] Maleknejad, K.; Mahmoudi, Y., Taylor polynomial solution of high-order nonlinear Volterra Fredholm integro-differential equations, Appl. Math. Comput., 145, 641-653 (2003) · Zbl 1032.65144 [14] Zarebnia, M.; Nikpour, Z., Solution of linear Volterra integro-differential equations via Sinc functions, Int. J. Appl. Math. Comput., 2, 1-10 (2010) [15] Wazwaz, A. M., The combined Laplace transform-Adomian decomposition method for handling nonlinear Volterra integro-differential equations, Appl. Math. Comput., 216, 1304-1309 (2010) · Zbl 1190.65199 [16] Adomian, G., Nonlinear Stochastic Operator Equations (1986), Academic: Academic Orlando, FL · Zbl 0614.35013 [17] Adomian, G., Solving Frontier Problems of Physics: The Decomposition Method (1994), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 0802.65122 [18] Adomian, G., An investigation of the asymptotic decomposition method for nonlinear equations in physics, Appl. Math. Comput., 24, 1-17 (1987) · Zbl 0637.65086 [19] Adomian, G., An adaptation of the decomposition method for asymptotic solutions, Math. Comput. Simulat., 30, 325-329 (1988) · Zbl 0653.65057 [20] Adomian, G., Solving the nonlinear equations of physics, Comput. Math. Appl., 16, 903-914 (1988) · Zbl 0666.60061 [21] Haldar, K.; Datta, B. K., Integrations by asymptotic decomposition, Appl. Math. Lett., 9, 81-83 (1996) · Zbl 0855.34009 [22] Evans, D. J.; Hossen, K. A., Asymptotic decomposition method for solving mildly nonlinear differential equation, Int. J. Comput. Math., 78, 569-573 (2001) · Zbl 0991.65123 [23] Rach, R.; Duan, J. S., Near-field and far-field approximations by the Adomian and asymptotic decomposition methods, Appl. Math. Comput., 217, 5910-5922 (2011) · Zbl 1209.65071 [24] Bougoffa, L., New exact general solutions of Abel equation of the second kind, Appl. Math. Comput., 216, 689-691 (2010) · Zbl 1194.34002 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.