## The spectral methods for parabolic Volterra integro-differential equations.(English)Zbl 1219.65161

Summary: We study the numerical solutions to parabolic Volterra integro-differential equations in one-dimensional bounded and unbounded spatial domains. In a bounded domain, the given parabolic Volterra integro-differential equation is converted to two equivalent equations. Then, a Legendre-collocation method is used to solve them and finally a linear algebraic system is obtained. For the unbounded case, we use the algebraic mapping to transfer the problem on a bounded domain and then apply the same presented approach for the bounded domain. In both cases, some numerical examples are presented to illustrate the efficiency and accuracy of the proposed method.

### MSC:

 65R20 Numerical methods for integral equations 45K05 Integro-partial differential equations
Full Text:

### References:

 [1] Boyd, J. P., Chebyshev and Fourier Spectral Methods (2000), Dover: Dover New York [2] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods in Fluid Dynamics (1988), Springer-Verlag: Springer-Verlag New York · Zbl 0658.76001 [3] Boyd, J. P., Pseudospectral methods on a semi-infinite interval with application to the hydrogen atom: a comparison of the mapped Fourier-sine method with Laguerre series and rational Chebyshev expansions, J. Comput. Phys., 188, 56-74 (2003) · Zbl 1028.65086 [4] Bao, W.; Shen, J., A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates, J. Comput. Phys., 227, 9778-9793 (2008) · Zbl 1149.76039 [5] Olmos, D.; Shizgal, B. D., A pseudospectral method of solution of Fisher’s equation, J. Comput. Appl. Math., 193, 219-242 (2006) · Zbl 1092.65088 [6] Olmos, D.; Shizgal, B. D., Pseudospectral method of solution of the Fitzhugh-Nagumo equation, Math. Comput. Simulation, 79, 2258-2278 (2009) · Zbl 1166.65382 [7] Yanik, E. G.; Fairweather, G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12, 785-809 (1988) · Zbl 0657.65142 [8] Engler, H., On some parabolic integro-differential equations: existence and asymptotics of solutions, (Equadiff 82. Equadiff 82, Lecture Notes in Mathematics, 1017 (1983), Springer: Springer Berlin), 161-167 · Zbl 0539.35074 [9] Aguilar, M.; Brunner, H., Collocation methods for second-order Volterra integro-differential equations, Appl. Numer. Math., 4, 455-470 (1988) · Zbl 0651.65098 [10] Vasudeva Murthy, A. S.; Verwer, J. G., Solving parabolic integro-differential equations by an explicit integration method, J. Comput. Appl. Math., 39, 121-132 (1992) · Zbl 0746.65102 [11] Brunner, H.; Makroglou, A.; Miller, R. K., Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution, Appl. Numer. Math., 23, 381-402 (1997) · Zbl 0876.65090 [12] Brunner, H., Implicit Runge-Kutta-Nyström methods for general second-order Volterra integro-differential equations, Comput. Math. Appl., 14, 549-559 (1987) · Zbl 0632.65137 [13] Tang, T., A finite difference scheme for partial integro-differential equations with a weakly singular kernel, Appl. Numer. Math., 11, 309-319 (1993) · Zbl 0768.65093 [14] Elnagar, G. N.; Kazemi, M., Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76, 147-158 (1996) · Zbl 0873.65122 [15] Fujiwara, H., High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Theor. Appl. Mech. Jpn., 52, 193-203 (2003) [16] Tang, T., On spectral methods for Volterra integral equations and the convergence analysis, J. Comput. Math., 26, 825-837 (2008) · Zbl 1174.65058 [17] Jiang, Ying-Jun, On spectral methods for Volterra-type integro-differential equations, J. Comput. Appl. Math., 230, 333-340 (2009) · Zbl 1202.65170 [18] Han, H.; Zhua, L.; Brunner, H.; Ma, J., The numerical solution of parabolic Volterra integro-differential equations on unbounded spatial domains, Appl. Numer. Math., 55, 83-99 (2005) · Zbl 1078.65126 [19] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simulation, 71, 16-30 (2006) · Zbl 1089.65085 [20] Dehghan, M., Solution of a partial integro-differential equation arising from viscoelasticity, Int. J. Comput. Math., 83, 123-129 (2006) · Zbl 1087.65119 [21] Dehghan, M.; Shakourifar, M.; Hamidi, A., The solution of linear and nonlinear systems of Volterra functional equations using Adomian-Pade technique, Chaos Solitons Fractals, 39, 2509-2521 (2009) · Zbl 1197.65223 [22] Dehghan, M.; Shakeri, F., Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique, Int. J. Numer. Methods Biomed. Eng., 26, 705-715 (2010) · Zbl 1192.65158 [23] Mirzaei, D.; Dehghan, M., A meshless based method for solution of integral equations, Appl. Numer. Math., 60, 245-262 (2010) · Zbl 1202.65174 [24] Shakourifar, M.; Dehghan, M., On the numerical solution of nonlinear systems of Volterra integro-differential equations with delay arguments, Computing, 82, 241-260 (2008) · Zbl 1154.65098 [25] Costa, B.; Don, W. S., On the computation of high order pseudospectral derivatives, Appl. Numer. Math., 33, 151-159 (2000) · Zbl 0964.65020 [26] Givoli, D., Numerical Methods for Problems in Infinite Domains (1992), Elsevier: Elsevier Amsterdam · Zbl 0788.76001 [27] Shen, J.; Wang, L.-L., Analysis of a spectral-Galerkin approximation to the Helmholtz equation in exterior domains, SIAM J. Numer. Anal., 45, 1954-1978 (2007) · Zbl 1154.65082 [28] Boyd, J. P., The rate of convergence of Hermite function series, Math. Comp., 35, 1309-1316 (1980) · Zbl 0459.40005 [29] Christov, C. I., A complete orthonormal system of functions in $$L^2(- \infty, \infty)$$ space, SIAM J. Appl. Math., 42, 1337-1344 (1982) · Zbl 0562.33009 [30] Guo, B. Y., Error estimation of Hermite spectral method for nonlinear partial differential equations, Math. Comp., 68, 1067-1078 (1999) · Zbl 0918.65069 [31] Guo, B. Y.; Shen, J., Laguerre-Galerkin method for nonlinear partial differential equations on a semi-infinite interval, Numer. Math., 86, 635-654 (2000) · Zbl 0969.65094 [32] Guo, B. Y.; Shen, J.; Xu, C. L., Spectral and pseudospectral approximations using Hermite functions: application to the Dirac equation, Adv. Comput. Math., 19, 35-55 (2003) · Zbl 1032.33004 [33] Shen, J., Stable and efficient spectral methods in unbounded domains using Laguerre functions, SIAM J. Numer. Anal., 38, 1113-1133 (2000) · Zbl 0979.65105 [34] Boyd, J. P., Spectral methods using rational basis functions on an infinite interval, J. Comput. Phys., 69, 112-142 (1987) · Zbl 0615.65090 [35] Boyd, J. P., Orthogonal rational functions on a semi-infinite interval, J. Comput. Phys., 70, 63-88 (1987) · Zbl 0614.42013 [36] Guo, B. Y.; Shen, J., On spectral approximations using modified Legendre rational functions: application to Korteweg-de Vries equation on the half line, Indiana Univ. Math. J., 50, 181-204 (2001) · Zbl 0992.65111 [37] Guo, B. Y.; Shen, J.; Wang, Z. Q., Chebyshev rational spectral and pseudospectral methods on a semi-infinite interval, Internat. J. Numer. Methods Engrg., 53, 65-84 (2002) · Zbl 1001.65129 [38] Guo, B. Y.; Shen, J.; Wang, Z. Q., A rational approximation and its applications to differential equations on the half line, J. Sci. Comput., 15, 117-147 (2000) · Zbl 0984.65104 [39] Wang, Z.-Q.; Guo, B.-Y., A rational approximation and its applications to nonlinear partial differential equations on the whole line, J. Math. Anal. Appl., 274, 374-403 (2002) · Zbl 1121.41303 [40] Cloot, A.; Weideman, J. A.C., An adaptive algorithm for spectral computations on unbounded domains, J. Comput. Phys., 102, 398-406 (1992) · Zbl 0760.65095 [41] Grosch, C. E.; Orszag, S. A., Numerical solution of problems in unbounded regions: coordinates transforms, J. Comput. Phys., 25, 273-296 (1977) · Zbl 0403.65050 [42] Guo, B. Y., Gegenbauer approximation and its applications to differential equations on the whole line, J. Math. Anal. Appl., 226, 180-206 (1998) · Zbl 0913.41020 [43] Guo, B. Y., Jacobi spectral approximation and its applications to differential equations on the half line, J. Comput. Math., 18, 95-112 (2000) · Zbl 0948.65071 [44] Guo, B. Y., Jacobi approximations in certain Hilbert spaces and their applications to singular differential equations, J. Math. Anal. Appl., 243, 373-408 (2000) · Zbl 0951.41006 [45] Guo, B. Y., Spectral Methods and their Applications (1998), World Scientific: World Scientific River Edge, NJ · Zbl 0906.65110 [46] Shen, J.; Wang, L.-L., Some recent advances on spectral methods for unbounded domains, Commun. Comput. Phys., 5, 195-241 (2009) · Zbl 1364.65265 [47] Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations (1959), Dover Publ.: Dover Publ. New York · Zbl 0086.10402 [48] Habetler, G. J.; Schiffman, R. L., A finite difference method for analyzing the compression of poro-viscoelastic media, Computing, 6, 342-348 (1970) · Zbl 0295.73036 [49] Heard, M. L., An abstract parabolic Volterra integro-differential equation, SIAM J. Math. Anal., 13, 81-105 (1982) · Zbl 0477.45008 [50] Grosch, C. E.; Orszag, S. A., Numerical solution of problems in unbounded regions: coordinate transforms, J. Comput. Phys., 25, 273-296 (1977) · Zbl 0403.65050 [51] Dehghan, M.; Shakeri, F., Solution of an integro-differential equation arising in oscillating magnetic fields using He’s homotopy perturbation method, Progress in Electromagnetics Research, PIER, 78, 361-376 (2008) [52] Saadatmandi, A.; Dehghan, M., Numerical solution of the higher-order linear Fredholm integro-differential-difference equation with variable coefficients, Comput. Math. Appl., 59, 2996-3004 (2010) · Zbl 1193.65229 [53] Dehghan, M.; Saadatmandi, A., Chebyshev finite difference method for Fredholm integro-differential equation, Internat. J. Computer Math., 85, 123-130 (2008) · Zbl 1131.65107 [54] Lakestani, M.; Dehghan, M., Numerical solution of fourth-order integro-differential equations using Chebyshev cardinal functions, Internat. J. Computer Math., 87, 1389-1394 (2010) · Zbl 1191.65183
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.