×

zbMATH — the first resource for mathematics

Conformal properties of four-gluon planar amplitudes and Wilson loops. (English) Zbl 1219.81227
Summary: We present further evidence for a dual conformal symmetry in the four-gluon planar scattering amplitude in \(\mathcal N=4\) SYM. We show that all the momentum integrals appearing in the perturbative on-shell calculations up to four loops are dual to true conformal integrals, well defined off shell. Assuming that the complete off-shell amplitude has this dual conformal symmetry and using the basic properties of factorization of infrared divergences, we derive the special form of the finite remainder previously found at weak coupling and recently reproduced at strong coupling by AdS/CFT. We show that the same finite term appears in a weak coupling calculation of a Wilson loop whose contour consists of four light-like segments associated with the gluon momenta. We also demonstrate that, due to the special form of the finite remainder, the asymptotic Regge limit of the four-gluon amplitude coincides with the exact expression evaluated for arbitrary values of the Mandelstam variables.

MSC:
81T60 Supersymmetric field theories in quantum mechanics
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Kinoshita, T.; Lee, T.D.; Nauenberg, M., Degenerate systems and mass singularities, J. math. phys., Phys. rev., 133, B1549, (1964)
[2] Bassetto, A.; Ciafaloni, M.; Marchesini, G., Jet structure and infrared sensitive quantities in perturbative QCD, Phys. rep., 100, 201, (1983)
[3] Collins, J.C.; Soper, D.E.; Sterman, G., Soft gluons and factorization, Nucl. phys. B, 308, 833, (1988)
[4] Collins, J.C., Sudakov form factors, Adv. ser. direct. high energy phys., 5, 573, (1989) · Zbl 0961.81525
[5] Korchemsky, G.P.; Radyushkin, A.V., Loop space formalism and renormalization group for the infrared asymptotics of QCD, Phys. lett. B, 171, 459, (1986)
[6] Sen, A., Asymptotic behavior of the wide angle on-shell quark scattering amplitudes in non-abelian gauge theories, Phys. rev. D, 28, 860, (1983)
[7] Botts, J.; Sterman, G., Hard elastic scattering in QCD: leading behavior, Nucl. phys. B, 325, 62, (1989)
[8] Sotiropoulos, M.G.; Sterman, G.; Contopanagos, H.; Laenen, E.; Sterman, G.; Kidonakis, N.; Sterman, G.; Kidonakis, N.; Oderda, G.; Sterman, G., Evolution of color exchange in QCD hard scattering, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, Nucl. phys. B, 531, 365, (1998)
[9] Korchemsky, G.P.; Korchemskaya, I.A.; Korchemsky, G.P., High-energy scattering in QCD and cross singularities of Wilson loops, Phys. lett. B, Nucl. phys. B, 437, 127, (1995)
[10] Mert Aybat, S.; Dixon, L.J.; Sterman, G.; Mert Aybat, S.; Dixon, L.J.; Sterman, G., The two-loop soft anomalous dimension matrix and resummation at next-to-next-to leading pole, Phys. rev. lett., Phys. rev. D, 74, 074004, (2006)
[11] Polyakov, A.M., Gauge fields as rings of glue, Nucl. phys. B, 164, 171, (1980)
[12] Brandt, R.A.; Neri, F.; Sato, M.a., Renormalization of loop functions for all loops, Phys. rev. D, 24, 879, (1981)
[13] Ivanov, S.V.; Korchemsky, G.P.; Radyushkin, A.V.; Korchemsky, G.P.; Radyushkin, A.V.; Korchemsky, G.P.; Radyushkin, A.V., Infrared asymptotics of perturbative QCD. vertex functions, Yad. fiz., Sov. J. nucl. phys., Sov. J. nucl. phys., Yad. fiz., Sov. J. nucl. phys., Yad. fiz., 45, 1466, (1987)
[14] Korchemsky, G.P.; Radyushkin, A.V., Renormalization of the Wilson loops beyond the leading order, Nucl. phys. B, 283, 342, (1987)
[15] Bern, Z.; Rozowsky, J.S.; Yan, B., Two-loop four-gluon amplitudes in \(N = 4\) super-yang – mills, Phys. lett. B, 401, 273, (1997)
[16] Anastasiou, C.; Bern, Z.; Dixon, L.J.; Kosower, D.A., Planar amplitudes in maximally supersymmetric yang – mills theory, Phys. rev. lett., 91, 251602, (2003)
[17] Bern, Z.; Dixon, L.J.; Smirnov, V.A., Iteration of planar amplitudes in maximally supersymmetric yang – mills theory at three loops and beyond, Phys. rev. D, 72, 085001, (2005)
[18] Bern, Z.; Czakon, M.; Dixon, L.J.; Kosower, D.A.; Smirnov, V.A., The four-loop planar amplitude and cusp anomalous dimension in maximally supersymmetric yang – mills theory, Phys. rev. D, 75, 085010, (2007)
[19] Bern, Z.; Carrasco, J.J.M.; Johansson, H.; Kosower, D.A., Maximally supersymmetric planar yang – mills amplitudes at five loops
[20] Belitsky, A.V.; Gorsky, A.S.; Korchemsky, G.P., Gauge/string duality for QCD conformal operators, Nucl. phys. B, 667, 3, (2003) · Zbl 1059.81615
[21] Cachazo, F.; Spradlin, M.; Volovich, A., Four-loop cusp anomalous dimension from obstructions, Phys. rev. D, 75, 105011, (2007)
[22] Kotikov, A.V.; Lipatov, L.N.; Onishchenko, A.I.; Velizhanin, V.N.; Kotikov, A.V.; Lipatov, L.N.; Onishchenko, A.I.; Velizhanin, V.N., Three-loop universal anomalous dimension of the Wilson operators in \(N = 4\) SUSY yang – mills model, Phys. lett. B, Phys. lett. B, 632, 754, (2006), Erratum · Zbl 1247.81485
[23] Vogt, A.; Moch, S.; Vermaseren, J.A.M., The three-loop splitting functions in QCD: the singlet case, Nucl. phys. B, 691, 129, (2004) · Zbl 1109.81374
[24] Eden, B.; Staudacher, M.; Beisert, N.; Eden, B.; Staudacher, M., Transcendentality and crossing, J. stat. mech., J. stat. mech., 0701, P021, (2007)
[25] Cachazo, F.; Spradlin, M.; Volovich, A., Iterative structure within the five-particle two-loop amplitude, Phys. rev. D, 74, 045020, (2006)
[26] Bern, Z.; Czakon, M.; Kosower, D.A.; Roiban, R.; Smirnov, V.A., Two-loop iteration of five-point \(N = 4\) super-yang – mills amplitudes, Phys. rev. lett., 97, 181601, (2006) · Zbl 1228.81213
[27] Alday, L.F.; Maldacena, J., Gluon scattering amplitudes at strong coupling
[28] Gubser, S.S.; Klebanov, I.R.; Polyakov, A.M., A semi-classical limit of the gauge/string correspondence, Nucl. phys. B, 636, 99, (2002) · Zbl 0996.81076
[29] Drummond, J.M.; Henn, J.; Smirnov, V.A.; Sokatchev, E., Magic identities for conformal four-point integrals, Jhep, 0701, 064, (2007)
[30] Maldacena, J.M.; Rey, S.J.; Yee, J.T., Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Phys. rev. lett., Eur. phys. J. C, 22, 379, (2001) · Zbl 1072.81555
[31] Kruczenski, M.; Makeenko, Y., Light-cone Wilson loops and the string/gauge correspondence, Jhep, Jhep, 0301, 007, (2003) · Zbl 1226.81212
[32] Korchemskaya, I.A.; Korchemsky, G.P., Evolution equation for gluon Regge trajectory, Phys. lett. B, 387, 346, (1996)
[33] Green, M.B.; Schwarz, J.H.; Brink, L., \(N = 4\) yang – mills and \(N = 8\) supergravity as limits of string theories, Nucl. phys. B, 198, 474, (1982)
[34] Gates, S.J.; Grisaru, M.T.; Rocek, M.; Siegel, W., Superspace, or one thousand and one lessons in supersymmetry, Front. phys., 58, 1, (1983)
[35] Broadhurst, D.J., Summation of an infinite series of ladder diagrams, Phys. lett. B, 307, 132, (1993)
[36] ’t Hooft, G.; Veltman, M.J.G.; Usyukina, N.I.; Davydychev, A.I., Exact results for three and four point ladder diagrams with an arbitrary number of rungs, Nucl. phys. B, Phys. lett. B, 305, 136, (1993)
[37] Mueller, A.H.; Collins, J.C.; Sen, A.; Korchemsky, G.P.; Magnea, L.; Sterman, G., Analytic continuation of the Sudakov form-factor in QCD, Phys. rev. D, Phys. rev. D, Phys. rev. D, Phys. lett. B, Phys. rev. D, 42, 4222, (1990)
[38] Korchemsky, G.P., Sudakov form-factor in QCD, Phys. lett. B, 220, 629, (1989)
[39] Kodaira, J.; Trentadue, L.; Davies, C.T.H.; Stirling, W.J., Nonleading corrections to the drell – yan cross-section at small transverse momentum, Phys. lett. B, Nucl. phys. B, 244, 337, (1984)
[40] Humpert, B.; Van Neerven, W.L.; Humpert, B.; Van Neerven, W.L., Ambiguities in the infrared regularization of QCD, Phys. lett. B, Phys. lett. B, 85, 471, (1979), Erratum
[41] Kuhn, J.H.; Penin, A.A.; Smirnov, V.A., Summing up subleading Sudakov logarithms, Eur. phys. J. C, 17, 97, (2000)
[42] Sudakov, V.V., Vertex parts at very high-energies in quantum electrodynamics, Sov. phys. JETP, Zh. eksp. teor. fiz., 30, 87, (1956) · Zbl 0071.42803
[43] Sterman, G.; Gatheral, J.G.M.; Frenkel, J.; Taylor, J.C., Non-abelian eikonal exponentiation, (), Phys. lett. B, Nucl. phys. B, 246, 231, (1984)
[44] Smilga, A.V., Next-to-leading logarithms in the high-energy asymptotics of the quark form-factor and the jet cross-section, Nucl. phys. B, 161, 449, (1979)
[45] Korchemskaya, I.A.; Korchemsky, G.P.; Bassetto, A.; Korchemskaya, I.A.; Korchemsky, G.P.; Nardelli, G., Gauge invariance and anomalous dimensions of a light cone Wilson loop in lightlike axial gauge, Phys. lett. B, Nucl. phys. B, 408, 62, (1993)
[46] Korchemsky, G.P.; Korchemsky, G.P.; Marchesini, G., Structure function for large x and renormalization of Wilson loop, Mod. phys. lett. A, Nucl. phys. B, 406, 225, (1993)
[47] Mandelstam, S.; Grisaru, M.T.; Schnitzer, H.J.; Tsao, H.S.; Grisaru, M.T.; Schnitzer, H.J.; Tsao, H.S.; Grisaru, M.T.; Schnitzer, H.J.; Tsao, H.S., The reggeization of elementary particles in renormalizable gauge theories: scalars, Phys. rev., Phys. rev. lett., Phys. rev. D, Phys. rev. D, 9, 2864, (1974)
[48] Kuraev, E.A.; Lipatov, L.N.; Fadin, V.S., Multi-Reggeon processes in the yang – mills theory, Sov. phys. JETP, Zh. eksp. teor. fiz., 71, 840, (1976)
[49] Fadin, V.S.; Fiore, R.; Kotsky, M.I., Gluon Regge trajectory in the two-loop approximation, Phys. lett. B, 387, 593, (1996)
[50] Glover, E.W.N.; Oleari, C.; Tejeda-Yeomans, M.E., Two-loop QCD corrections to gluon – gluon scattering, Nucl. phys. B, 605, 467, (2001)
[51] Del Duca, V.; Glover, E.W.N., The high energy limit of QCD at two loops, Jhep, 0110, 035, (2001)
[52] Belitsky, A.V.; Braun, V.M.; Gorsky, A.S.; Korchemsky, G.P., Integrability in QCD and beyond, Int. J. mod. phys. A, 19, 4715, (2004) · Zbl 1059.81164
[53] A. Brandhuber, P. Heslop, G. Travaglini, private communication
[54] L. Dixon, private communication
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.