Durrett, Rick; Schmidt, Deena; Schweinsberg, Jason A waiting time problem arising from the study of multi-stage carcinogenesis. (English) Zbl 1219.92038 Ann. Appl. Probab. 19, No. 2, 676-718 (2009). The authors propose a mathematical model for cancer development. They consider a (cell) population of fixed size \(N\) and assume that the population evolves according to the Moran model, that is, each individual of the population lives an exponentially distributed time span with mean \(1\) and upon its death is replaced by a new individual, the parent of which is chosen uniformly at random among the \(N\) individuals. Each individual has a type \(j \in \{0,\dots,m\}\) and all individuals initially have type \(0\). Newborn individuals inherit their type from their parent. Additionally, during their life times, individuals of type \(j-1\) may mutate to type \(j\), \(j=1,\dots,m\). \(\tau_m\) is the first time there is an individual of type \(m\). The authors study the asymptotic distribution of \(\tau_m\) when \(m \geq 2\) as \(N \to \infty\) using a broad variety of different methods. Reviewer: Matthias Meiners (Uppsala) Cited in 1 ReviewCited in 22 Documents MSC: 92C50 Medical applications (general) 60J85 Applications of branching processes 60J25 Continuous-time Markov processes on general state spaces Keywords:Moran model; waiting times; Wright-Fisher diffusion PDFBibTeX XMLCite \textit{R. Durrett} et al., Ann. Appl. Probab. 19, No. 2, 676--718 (2009; Zbl 1219.92038) Full Text: DOI arXiv References: [1] Armitage, P. and Doll, R. (1954). The age distribution of cancer and a multi-stage theory of carcinogenesis. Brit. J. Cancer 8 1-12. [2] Arratia, R., Goldstein, L. and Gordon, L. (1989). Two moments suffice for Poisson approximations: The Chen-Stein method. Ann. Probab. 17 9-25. · Zbl 0675.60017 · doi:10.1214/aop/1176991491 [3] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York. · Zbl 0259.60002 [4] Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion : Facts and Formulae , 2nd ed. Birkhäuser, Boston. · Zbl 1012.60003 [5] Calabrese, P., Mecklin, J. P., Järvinen, H. J., Aaltonen, L. A., Tavaré, S. and Shibata, D. (2005). Numbers of mutations to different types of colorectal cancer. BMC Cancer 5 126. [6] Durrett, R. (1996). Stochastic Calculus : A Practical Introduction . CRC Press, Boca Raton, FL. · Zbl 0856.60002 [7] Durrett, R. (2005). Probability : Theory and Examples , 3rd ed. Duxbury, Belmont, CA. · Zbl 0709.60002 [8] Durrett, R. and Schmidt, D. (2007). Waiting for regulatory sequences to appear. Ann. Appl. Probab. 17 1-32. · Zbl 1128.92024 · doi:10.1214/105051606000000619 [9] Durrett, R. and Schmidt, D. (2008). Waiting for two mutations: With applications to regulatory sequence evolution and the limits of Darwinian evolution. Genetics 180 1501-1509. [10] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes : Characterization and Convergence . Wiley, New York. · Zbl 0592.60049 [11] Ewens, W. J. (2004). Mathematical Population Genetics , 2nd ed. Springer, Berlin. · Zbl 1060.92046 [12] Iwasa, Y., Michor, F., Komarova, N. L. and Nowak, M. A. (2005). Population genetics of tumor suppressor genes. J. Theoret. Biol. 233 15-23. · doi:10.1016/j.jtbi.2004.09.001 [13] Iwasa, Y., Michor, F. and Nowak, M. A. (2004). Stochastic tunnels in evolutionary dynamics. Genetics 166 1571-1579. [14] Jones, S. (2008). Comparative lesion sequencing provides insights into tumor evolution. Proc. Natl. Acad. Sci. USA 105 4283-4288. [15] Knudson, A. G. (1971). Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. USA 68 820-823. [16] Kolmorogov, A. N. (1938). Zur Lösung einer biologischen Aufgabe. Izv. NII Mat. Mekh. Tomsk. Univ. 2 1-6. · Zbl 0019.35901 [17] Komarova, N. L., Sengupta, A. and Nowak, M. A. (2003). Mutation-selection networks of cancer initiation: Tumor suppressor genes and chromosomal instability. J. Theoret. Biol. 223 433-450. · doi:10.1016/S0022-5193(03)00120-6 [18] Luebeck, E. G. and Moolgavkar, S. H. (2002). Multistage carcinogenesis and the incidence of colorectal cancer. Proc. Natl. Acad. Sci. 99 15095-15100. [19] Moran, P. A. P. (1958). Random processes in genetics. Proc. Cambridge Philos. Soc. 54 60-71. · Zbl 0091.15701 · doi:10.1017/S0305004100033193 [20] Nowak, M. A. (2006). Evolutionary Dynamics : Exploring the Equations of Life . Belknap Press, Cambridge, MA. · Zbl 1115.92047 [21] Schinazi, R. B. (2006). The probability of treatment induced drug resistance. Acta Biotheoretica 54 13-19. [22] Schinazi, R. B. (2006). A stochastic model for cancer risk. Genetics 174 545-547. [23] Schweinsberg, J. (2008). The waiting time for m mutations. Electron. J. Probab. 13 1442-1478. · Zbl 1191.60100 [24] Wodarz, D. and Komarova, N. L. (2005). Computational Biology Of Cancer : Lecture Notes And Mathematical Modeling . World Scientific, Singapore. · Zbl 1126.92029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.